Wavelet Toolbox ${ }^{\text {TM }}$
 Reference

Michel Misiti
Yves Misiti
Georges Oppenheim
Jean-Michel Poggi

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com

Sales and services: www.mathworks.com/sales and services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Wavelet Toolbox ${ }^{\mathrm{TM}}$ Reference

© COPYRIGHT 1997-2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

March 1997
September 2000
June 2001
July 2002
June 2004
July 2004
October 2004
March 2005
June 2005
September 2005
March 2006 Online only
September 2006 Online only
March 2007
October 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March $2010 \quad$ Online only
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016

First printing
Second printing Online only Online only Online only Third printing Online only Online only Fourth printing Online only Online only Fifth printing Online only Online only

New for Version 1.0
Revised for Version 2.0 (Release 12)
Revised for Version 2.1 (Release 12.1)
Revised for Version 2.2 (Release 13)
Revised for Version 3.0 (Release 14)
Revised for Version 3.0
Revised for Version 3.0.1 (Release 14SP1)
Revised for Version 3.0.2 (Release 14SP2)
Minor revision for Version 3.0.2
Minor revision for Version 3.0.3 (Release R14SP3)
Minor revision for Version 3.0.4 (Release 2006a)
Revised for Version 3.1 (Release 2006b)
Revised for Version 4.0 (Release 2007a)
Revised for Version 4.1
Revised for Version 4.1 (Release 2007b)
Revised for Version 4.2 (Release 2008a)
Revised for Version 4.3 (Release 2008b)
Revised for Version 4.4 (Release 2009a)
Minor revision for Version 4.4.1 (Release 2009b)
Revised for Version 4.5 (Release 2010a)
Revised for Version 4.6 (Release 2010b)
Revised for Version 4.7 (Release 2011a)
Revised for Version 4.8 (Release 2011b)
Revised for Version 4.9 (Release 2012a)
Revised for Version 4.10 (Release 2012b)
Revised for Version 4.11 (Release 2013a)
Revised for Version 4.12 (Release 2013b)
Revised for Version 4.13 (Release 2014a)
Revised for Version 4.14 (Release 2014b)
Revised for Version 4.14.1 (Release 2015a)
Revised for Version 4.15 (Release 2015b)
Revised for Version 4.16 (Release 2016a)
Revised for Version 4.17 (Release 2016b)

Contents

Function Reference

addlift
allnodes
appcoef
appcoef2
bestlevt
besttree
biorfilt
biorwavf
bswfun
centfrq
cfs2wpt
cgauwavf
chgwdeccfs
cmddenoise
cmorwavf
coifwavf
conofinf
cwt
cwt
cwtft
cwtftinfo
cwtftinfo2
cwtft2
dbaux
dbwavf
ddencmp
dddtree
dddtreecfs
dddtree2
depo2ind
detcoef
detcoef2

```
disp
displs
drawtree
dtfilters
dtree
dwt
dwt2
dwt3
dwtleader
dwtmode
dyaddown
dyadup
entrupd
fbspwavf
filt2ls
fejerkorovkin
gauswavf
get
haart
haart2
icwt
icwtft
icwtlin
idddtree
idddtree2
idwt
idwt2
idwt3
ihaart
ihaart2
ilwt
ilwt2
imodwpt
imodwt
ind2depo
intwave
isnode
istnode
iswt
iswt2
```

iwsst
laurmat
laurpoly
leaves
liftfilt
liftwave
localmax
ls2filt
lsinfo
lwt
lwt2
lwtcoef
lwtcoef2
mdwtcluster
mdwtdec
mdwtrec
measerr
mexihat
meyer
meyeraux
modwpt
modwptdetails
modwt
modwtcorr
modwtmra
modwtvar
modwtxcorr
morlet
mswemp
mswempscr
mswemptp
mswden
mswthresh
nodeasc
nodedesc
nodejoin
nodepar
nodesplt
noleaves
ntnode

```
ntree
orthfilt
otnodes
pat2cwav
plot
plotdt
qmf
rbiowavf
read
readtree
scal2frq
set
shanwavf
swt
swt2
symaux
symwavf
thselect
tnodes
treedpth
treeord
upcoef
upcoef2
upwlev
upwlev2
wave2lp
wavedec
wavedec2
wavedec3
wavefun
wavefun2
waveinfo
Wavelet Analyzer
waveletfamilies
wavemngr
wavenames
waverec
waverec2
waverec3
wavsupport
```

wbmpen
wcodemat
wcoher
wcoherence
wcompress
wdcbm
wdcbm2
wdecenergy
wden
wdencmp
wenergy
wenergy2
wentropy
wextend
wfbm
wfbmesti
wfilters
wfusimg
wfusmat
wkeep
wmaxlev
wmpalg
wmpdictionary
wmspca
wmulden
wnoise
wnoisest
wp2wtree
wpbmpen
wpcoef
wpcutree
wpdec
wpdec2
wpdencmp
wpfun
wpjoin
wprcoef
wprec
wprec2
wpspectrum
wpsplt
wpthcoef
wptree
wpviewcf
wrcoef
wrcoef2
wrev
write
wscalogram
wsst
wsstridge
wtbo
wtbxmngr
wthcoef
wthcoef2
wthresh
wthrmngr
wtmm
wtreemgr
wvarchg

addlift

Add lifting steps to lifting scheme

Syntax

```
LSN = addlift(LS,ELS)
LSN = addlift(LS,ELS,'begin')
LSN = addlift(LS,ELS,'end')
addfilt(LS,ELS)
```


Description

$L S N=$ addlift($L S, E L S$) returns the new lifting scheme $L S N$ obtained by appending the elementary lifting step ELS to the lifting scheme $L S$.

LSN = addlift(LS,ELS,'begin') prepends the specified elementary lifting step.
$E L S$ is either a cell array (see lsinfo)
\{TYPEVAL, COEFS, MAX_DEG\}
or a structure (see liftfilt)
struct('type', TYPEVAL, 'value', LPVAL)
with
LPVAL = laurpoly (COEFS, MAX_DEG)
$L S N=\operatorname{addlift}(L S, E L S, ' e n d ')$ is equivalent to addfilt(LS,ELS).
If $E L S$ is a sequence of elementary lifting steps, stored in a cell array or an array of structures, then each of the elementary lifting steps is added to $L S$.

For more information about lifting schemes, see lsinfo.

Examples

Add Primal Lifting Step

This example shows how to start with the Haar lifting scheme and add a primal lifting step.

```
LSbegin = liftwave('haar');
```

Display the lifting scheme.

```
displs(LSbegin);
LSbegin = {...
\begin{tabular}{|c|c|c|}
\hline 'd' & -1.00000000] & [0] \\
\hline 'p' & \(0.50000000]\) & [0] \\
\hline \(1.41421356]\) & \(0.70710678]\) & [ ] \\
\hline
\end{tabular}
```

Create a primal lifting step.

```
pstep = { 'p', [-1 2 -1]/4 , 1 };
```

Add the primal lifting step.

```
LSend = addlift(LSbegin,pstep);
```

Display the final lifting scheme.

```
displs(LSend);
LSend = {...
\begin{tabular}{|c|c|c|}
\hline 'd' & -1.00000000] & \\
\hline 'p' & [ 0.50000000] & \\
\hline p' & [ -0.25000000 & 0.50000000-0.25000000] \\
\hline [ 1.41421356] & [ 0.70710678] & \\
\hline
\end{tabular}
```


See Also

liftfilt

Introduced before R2006a

allnodes

Tree nodes

Syntax

```
N = allnodes(T)
N = allnodes(T,'deppos')
```


Description

allnodes is a tree management utility that returns one of two node descriptions: either indices, or depths and positions.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$\mathrm{N}=$ allnodes (T) returns the indices of all the nodes of the tree T in column vector N.
$\mathrm{N}=$ allnodes(T, ' $^{\text {deppos }}{ }^{\prime}$) returns the depths and positions of all the nodes in matrix N.
$N(i, 1)$ is the depth and $N(i, 2)$ the position of the node i.

Examples

Return Nodes of Wavelet Packet Tree

This example shows how to obtain the depth-position and linear indices of a wavelet packet tree.

Load the noisy Doppler signal and obtain the wavelet packet decomposition down to the level 4 using the 'db2' wavelet.
load noisdopp;
T = wpdec(noisdopp, 4, 'db2');
Obtain the depth-position indices.

```
DepthPosition = allnodes(T,'deppos');
```

Obtain the corresponding linear indices.
LinearIndices = allnodes(T);
Display the correspondance in a table.
table(DepthPosition, LinearIndices)
ans $=$
DepthPosition
LinearIndices

0	0	0
1	0	1
1	1	2
2	0	3
2	1	4
2	2	5
2	3	6
3	0	7
3	1	8
3	2	9
3	3	10
3	4	11
3	5	12
3	6	13
3	7	14
4	0	15
4	1	16
4	2	17
4	3	18
4	4	19
4	5	20
4	6	21
4	7	22
4	8	23
4	9	24
4	10	25
4	11	26
4	12	27
4	13	28

4	14	29
4	15	30

Introduced before R2006a

appcoef

1-D approximation coefficients

Syntax

```
A = appcoef(C,L,'wname',N)
A = appcoef(C,L,'wname')
A = appcoef(C,L,Lo_R,Hi_R)
A = appcoef(C,L,Lo_R,Hi_R,N)
```


Description

appcoef is a one-dimensional wavelet analysis function.
appcoef computes the approximation coefficients of a one-dimensional signal.
A = appcoef(C,L,'wname',N) computes the approximation coefficients at level N using the wavelet decomposition structure [C,L] (see wavedec for more information).
'wname ' is a character vector containing the wavelet name. Level N must be an integer such that $0 \leq N \leq$ length (L)-2.

A = appcoef(C,L,'wname') extracts the approximation coefficients at the last level: length (L) - 2 .

Instead of giving the wavelet name, you can give the filters.
For $A=\operatorname{appcoef}\left(C, L, L o _R, H i _R\right) \operatorname{or} A=\operatorname{appcoef}\left(C, L, L o _R, H i _R, N\right), L o _R$ is the reconstruction low-pass filter and $H i _R$ is the reconstruction high-pass filter (see wfilters for more information).

Examples

Level 3 Approximation Coefficients

This example shows how to extract the level 3 approximation coefficients.

Load the signal consisting of electricity usage data.
load leleccum;
sig = leleccum(1:3920);
Obtain the DWT down to level 5 with the 'sym4' wavelet.
[C,L] = wavedec(sig,5,'sym4');
Extract the level-3 approximation coefficients. Plot the original signal and the approximation coefficients.

Lev = 3;
a3 = appcoef(C,L,'sym4',Lev);
subplot ($2,1,1$)
plot(sig); title('Original Signal');
subplot(2,1,2)
plot(a3); title('Level-3 Approximation Coefficients');

You can substitute any value from 1 to 5 for Lev to obtain the approximation coefficients for the corresponding level.

More About

Algorithms

The input vectors C and L contain all the information about the signal decomposition.
Let NMAX $=$ length $(\mathrm{L})-2$; then $C=[A(N M A X) D(N M A X) \ldots D(1)]$ where A and the D are vectors.

If $N=$ NMAX, then a simple extraction is done; otherwise, appcoef computes iteratively the approximation coefficients using the inverse wavelet transform.

See Also
detcoef | wavedec

Introduced before R2006a

appcoef2

2-D approximation coefficients

Syntax

A = appcoef2(C,S,'wname',N)
A = appcoef2(C,S,'wname')
A = appcoef2(C,S,Lo_R,Hi_R)
$A=\operatorname{appcoef} 2\left(C, S, L_{0}{ }^{-} R, \mathrm{Hi}_{-} R, N\right)$

Description

appcoef2 is a two-dimensional wavelet analysis function. It computes the approximation coefficients of a two-dimensional signal. The syntaxes allow you to give the wavelet name or the filters as inputs.
$\mathrm{A}=\operatorname{appcoef} 2\left(\mathrm{C}, \mathrm{S}, '\right.$ wname $\left.{ }^{\prime}, \mathrm{N}\right)$ computes the approximation coefficients at level N using the wavelet decomposition structure $[C, S]$ (see wavedec2 for more information).
'wname ' is a character vector containing the wavelet name. Level N must be an integer such that $0 \leq N \leq \operatorname{size}(S, 1)-2$.

A = appcoef2 (C, S, 'wname') extracts the approximation coefficients at the last level: size (S,1)-2.

A = appcoef2(C,S,Lo_R,Hi_R) or A = appcoef2(C,S,Lo_R,Hi_R,N),Lo_R is the reconstruction low-pass filter and $H i_{-} R$ is the reconstruction high-pass filter (see wfilters for more information).

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load original image. load woman;

```
% X contains the loaded image.
% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
sizex = size(X)
sizex =
    256 256
sizec = size(c)
sizec =
    1 65536
    val_s = s
val_s =
    64 64
    64 64
    128 128
    256 256
% Extract approximation coefficients
% at level 2.
ca2 = appcoef2(c,s,'db1',2);
sizeca2 = size(ca2)
sizeca2 =
    64 64
% Compute approximation coefficients
% at level }1
ca1 = appcoef2(c,s,'db1',1);
sizeca1 = size(ca1)
sizeca1 =
    128 128
```


More About

Tips

If C and S are obtained from an indexed image analysis or a truecolor image analysis, A is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

Algorithms

The algorithm is built on the same principle as appcoef.

See Also
detcoef2 | wavedec2
Introduced before R2006a

bestlevt

Best level tree wavelet packet analysis

Syntax

T = bestlevt(T)
[T,E] = bestlevt(T)

Description

bestlevt is a one- or two-dimensional wavelet packet analysis function.
bestlevt computes the optimal complete subtree of an initial tree with respect to an entropy type criterion. The resulting complete tree may be of smaller depth than the initial one.
$\mathrm{T}=$ bestlevt(T) computes the modified wavelet packet tree T corresponding to the best level tree decomposition.
[T,E] = bestlevt(T) computes the best level tree T, and in addition, the best entropy value E.

The optimal entropy of the node, whose index is $\mathrm{j}-1$, is $\mathrm{E}(\mathrm{j})$.

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp;
x = noisdopp;
% Decompose x at depth 3 with db1 wavelet, using default
% entropy (shannon).
wpt = wpdec(x,3,'db1');
```

```
% Decompose the packet [3 0].
wpt = wpsplt(wpt,[3 0]);
% Plot wavelet packet tree wpt.
plot(wpt)
```


\% Compute best level tree.
blt = bestlevt(wpt);
\% Plot best level tree blt.
plot(blt)

More About

Algorithms

See besttree algorithm section. The only difference is that the optimal tree is searched among the complete subtrees of the initial tree, instead of among all the binary subtrees.

See Also
besttree | wpdec | wenergy | wpdec2
Introduced before R2006a

besttree

Best tree wavelet packet analysis

Syntax

```
T = besttree(T)
[T,E] = besttree(T)
[T,E,N] = besttree(T)
```


Description

besttree is a one- or two-dimensional wavelet packet analysis function that computes the optimal subtree of an initial tree with respect to an entropy type criterion. The resulting tree may be much smaller than the initial one.

Following the organization of the wavelet packets library, it is natural to count the decompositions issued from a given orthogonal wavelet.

A signal of length $N=2^{L}$ can be expanded in a different ways, where a is the number of binary subtrees of a complete binary tree of depth L.

As a result, we can conclude that $\alpha \geq 2^{N / 2}$ (for more information, see the Mallat's book given in References at page 323).

This number may be very large, and since explicit enumeration is generally intractable, it is interesting to find an optimal decomposition with respect to a convenient criterion, computable by an efficient algorithm. We are looking for a minimum of the criterion.
$\mathrm{T}=$ besttree (T) computes the best tree T corresponding to the best entropy value.
[T,E] = besttree(T) computes the best tree T and, in addition, the best entropy value E.

The optimal entropy of the node, whose index is $\mathrm{j}-1$, is $\mathrm{E}(\mathrm{j})$.
$[\mathrm{T}, \mathrm{E}, \mathrm{N}]=$ besttree (T) computes the best tree T, the best entropy value E and, in addition, the vector N containing the indices of the merged nodes.

Examples

Best Wavelet Packet Tree

This example shows to obtain the optimal wavelet packet tree based on an entropy criterion.

Load the noisy Doppler signal. Obtain the wavelet packet tree down to level 4 with the ' sym4 ' wavelet. Use the periodic extension mode.

```
dwtmode('per');
load noisdopp;
T = wpdec(noisdopp,4,'sym4');
*******************************************
** DWT Extension Mode: Periodization **
*******************************************
```

Obtain the best wavelet packet tree and plot the result.

```
BstTree = besttree(T);
plot(BstTree)
```


Return the DWT extension mode to the default value.
dwtmode('sym');
!!
! WARNING: Change DWT Extension Mode !
$!!$

```
** DWT Extension Mode: Symmetrization (half-point) **
```

***)

More About

Algorithms

Consider the one-dimensional case. Starting with the root node, the best tree is calculated using the following scheme. A node N is split into two nodes N 1 and N 2 if and only if the sum of the entropy of N1 and N2 is lower than the entropy of N. This is a local criterion based only on the information available at the node N .

Several entropy type criteria can be used (see wenergy for more information). If the entropy function is an additive function along the wavelet packet coefficients, this algorithm leads to the best tree.

Starting from an initial tree T and using the merging side of this algorithm, we obtain the best tree among all the binary subtrees of T .

- "Reconstructing a Signal Approximation from a Node"

References

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Mallat, S. (1998), A wavelet tour of signal processing, Academic Press.

See Also

bestlevt | wenergy | wpcoef | wpdec | wpdec2 | wprcoef

Introduced before R2006a

biorfilt

Biorthogonal wavelet filter set

Syntax

[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(DF,RF)
[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,Hi_R2] = biorfilt ($\bar{D} F, R F,{ }^{\prime} 8$ ')

Description

The biorfilt command returns either four or eight filters associated with biorthogonal wavelets.
[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt (DF,RF) computes four filters associated with the biorthogonal wavelet specified by decomposition filter $D F$ and reconstruction filter RF. These filters are

Lo_D	Decomposition low-pass filter
Hi_D	Decomposition high-pass filter
Lo_R	Reconstruction low-pass filter
Hi_R	Reconstruction high-pass filter

[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,Hi_R2] = biō̄filt ($\bar{D} F, R F, '{ }^{\prime} 8$ ') returns eight filters, the first four associated with the decomposition wavelet, and the last four associated with the reconstruction wavelet.

It is well known in the subband filtering community that if the same FIR filters are used for reconstruction and decomposition, then symmetry and exact reconstruction are incompatible (except with the Haar wavelet). Therefore, with biorthogonal filters, two wavelets are introduced instead of just one:

One wavelet, $\tilde{\psi}$, is used in the analysis, and the coefficients of a signal s are

$$
\tilde{c}_{j, k}=\int s(x) \tilde{\psi}_{j, k}(x) d x
$$

The other wavelet, Ψ, is used in the synthesis:

$$
s=\sum_{j, k} \tilde{c}_{j, k} \psi_{j, k}
$$

Furthermore, the two wavelets are related by duality in the following sense:
$\int \tilde{\psi}_{j, k}(x) \psi_{j^{\prime}, k^{\prime}}(x) d x=0$ as soon as $j \neq j^{\prime}$ or $k \neq k^{\prime}$ and
$\int \tilde{\phi}_{0, k}(x) \phi_{0, k^{\prime}}(x) d x=0$ as soon as $k \neq k^{\prime}$.
It becomes apparent, as A. Cohen pointed out in his thesis (p. 110), that "the useful properties for analysis (e.g., oscillations, null moments) can be concentrated in the $\tilde{\psi}$ function; whereas, the interesting properties for synthesis (regularity) are assigned to the ψ function. The separation of these two tasks proves very useful."
$\tilde{\psi}$ and Ψ can have very different regularity properties, Ψ being more regular than $\tilde{\psi}$.

The $\tilde{\psi}, \Psi, \tilde{\phi}$ and ϕ functions are zero outside a segment.

Examples

Biorthogonal Filters and Transfer Functions

This example shows how to obtain the decompositition (analysis) and reconstruction (synthesis) filters for the 'bior3.5' wavelet.

Determine the two scaling and wavelet filters associated with the 'bior3.5' wavelet.

```
[Rf,Df] = biorwavf('bior3.5');
[LoD,HiD,LoR,HiR] = biorfilt(Df,Rf);
```

Plot the filter impulse responses.

```
subplot(221); stem(LoD);
title('Dec. low-pass filter bior3.5');
subplot(222); stem(HiD);
title('Dec. high-pass filter bior3.5');
subplot(223); stem(LoR);
title('Rec. low-pass filter bior3.5');
subplot(224); stem(HiR);
title('Rec. high-pass filter bior3.5');
```


Rec. Iow-pass filter bior3.5

Dec. high-pass filter bior3.5

Rec. high-pass filter bior3.5

Demonstrate that autocorrelations at even lags are only zero for dual pairs of filters. Examine the autocorrelation sequence for the lowpass decomposition filter.

```
npad = 2*length(LoD)-1;
```

```
    LoDxcr = fftshift(ifft(abs(fft(LoD,npad)).^2));
    lags = -floor(npad/2):floor(npad/2);
    figure;
    stem(lags,LoDxcr,'markerfacecolor',[0 O 1])
    set(gca,'xtick',-10:2:10)
```


Examine the cross correlation sequence for the lowpass decomposition and synthesis filters. Compare the result with the preceding figure.

```
npad = 2*length(LoD)-1;
xcr = fftshift(ifft(fft(LoD,npad).*conj(fft(LoR,npad))));
lags = -floor(npad/2):floor(npad/2);
stem(lags,xcr,'markerfacecolor',[0 0 1])
set(gca,'xtick',-10:2:10)
```


Compare the transfer functions of the analysis and synthesis scaling and wavelet filters

```
dftLoD = fft(LoD,64);
dftLoD = dftLoD(1:length(dftLoD)/2+1);
dftHiD= fft(HiD,64);
dftHiD = dftHiD(1:length(dftHiD)/2+1);
dftLoR = fft(LoR,64);
dftLoR = dftLoR(1:length(dftLoR)/2+1);
dftHiR = fft(HiR,64);
dftHiR = dftHiR(1:length(dftHiR)/2+1);
df = (2*pi)/64;
freqvec = 0:df:pi;
```

subplot(211); plot(freqvec,abs(dftLoD),freqvec,abs(dftHiD), 'r');

```
axis tight;
title('Transfer modulus for dec. filters')
subplot(212); plot(freqvec,abs(dftLoR),freqvec,abs(dftHiR),'r');
axis tight;
title('Transfer modulus for rec. filters')
```

Transfer modulus for dec. filters

Transfer modulus for rec. filters

References

Cohen, A. (1992), "Ondelettes, analyses multirésolution et traitement numérique du signal," Ph. D. Thesis, University of Paris IX, DAUPHINE.

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

See Also
biorwavf | orthfilt
Introduced before R2006a

biorwavf

Biorthogonal spline wavelet filter

Syntax

[RF,DF] = biorwavf(W)

Description

[RF,DF] = biorwavf(W) returns the reconstruction (synthesis) and decomposition (analysis) filters associated with the biorthogonal wavelet specified by the character vector W.
$\mathrm{W}=\mathrm{'biorNr} . \mathrm{Nd}$ ' where possible values for $N r$ and $N d$ are

$N r=1$	$N d=1,3$ or 5
$N r=2$	$N d=2,4,6$ or 8
$N r=3$	$N d=1,3,5,7$ or 9
$N r=4$	$N d=4$
$N r=5$	$N d=5$
$N r=6$	$N d=8$

The output arguments are filters.

- RF is the reconstruction filter.
- DF is the decomposition filter.

Examples

Return the biorthogonal spline wavelet scaling filters with 2 vanishing moments.

```
wname = 'bior2.2';
[RF,DF] = biorwavf(wname);
```

See Also
biorfilt | waveinfo
Introduced before R2006a

bswfun

Biorthogonal scaling and wavelet functions

Syntax

```
[PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR)
bswfun(LoD,HiD,LoR,HiR,ITER)
bswfun(LoD,HiD,LoR,HiR,'plot')
bswfun(LoD,HiD,LoR,HiR,ITER,'plot')
bswfun(LoD,HiD,LoR,HiR,'plot',ITER)
```


Description

[PHIS,PSIS, PHIA, PSIA, XVAL] = bswfun(LoD,HiD,LoR,HiR) returns approximations on the grid XVAL of the two pairs of biorthogonal scaling and wavelet functions. PHIS and PSIS are the scaling and wavelet functions constructed from the decomposition filters, LoD and HiD. PHIA and PSIA are the scaling and wavelet functions constructed from the reconstruction filters, LoR and HiR.
bswfun(LoD,HiD, LoR,HiR, ITER) computes the two pairs of scaling and wavelet functions using ITER iterations.
bswfun(LoD,HiD,LoR,HiR,'plot') or bswfun(LoD,HiD,LoR,HiR,ITER,'plot') or bswfun(LoD,HiD, LoR,HiR, 'plot', ITER) computes and plots the functions.

Examples

Biorthogonal Scaling and Wavelet from Lifting Scheme

This example shows how to obtain the biorthogonal scaling and wavelet functions corresponding to a lifting scheme. Obtain the lifting scheme for the CDF 3/1 wavelet.

```
lscdf = liftwave('cdf3.1');
```

Display the lifting scheme, which consists of two primal and one dual step.

```
Sc = displs(lscdf);
Sc
Sc =
lscdf = {...
'p' 
```



```
[2.12132034] [ 0.47140452] []
};
```

Obtain the decomposition and reconstruction filters from the lifting scheme.

```
[LoD,HiD,LoR,HiR] = ls2filt(lscdf);
```

Visualize the scaling and wavelet function and their duals.

```
bswfun(LoD,HiD,LoR,HiR,'plot');
```


More About

Algorithms

This function uses the cascade algorithm.

See Also

wavefun

Introduced before R2006a

centfrq

Wavelet center frequency

Syntax

```
FREQ = centfrq('wname')
FREQ = centfrq('wname',ITER)
[FREQ,XVAL,RECFREQ] = centfrq('wname',ITER,'plot')
```


Description

FREQ = centfrq('wname') returns the center frequency in herz of the wavelet function, 'wname' (see wavefun for more information).

For FREQ = centfrq('wname', ITER), ITER is the number of iterations performed by the function wavefun, which is used to compute the wavelet.
[FREQ, XVAL, RECFREQ] = centfrq('wname', ITER,'plot') returns, in addition, the associated center frequency based approximation RECFREQ on the $2^{\text {ITER }}$ points grid XVAL and plots the wavelet function and RECFREQ.

Examples

Determine Center Frequency

This example shows how to determine the center frequency in hertz for Daubechies' least-asymmetric wavelet with 4 vanishing moments.

```
cfreq = centfrq('sym4');
```

Obtain the wavelet and create a sine wave with a frequency equal to the center frequency, cfreq, of the wavelet. Use a starting phase of $-\pi$ for the sine wave to visualize how the oscillation in the sine wave matches the oscillation in the wavelet.

```
[~,psi,xval] = wavefun('sym4');
y = cos(2*pi*cfreq*xval-pi);
```

```
    plot(xval,psi,'linewidth',2);
    hold on;
plot(xval,y,'r');
```


Convert Scales to Frequencies

This example shows to convert scales to frequencies for the Morlet wavelet. There is an approximate inverse relationship between scale and frequency. Specifically, scale is inversely proportional to frequency with the constant of proportionality being the center frequency of the wavelet.

Construct a vector of scales with 32 voices per octave over 5 octaves for data sampled at 1 kHz.

```
Fs = 1000;
numvoices = 32;
a0 = 2^(1/numvoices);
numoctaves = 5;
scales = a0.^(numvoices:1/numvoices:numvoices*numoctaves).*1/Fs;
```

Convert the scales to approximate frequencies in hertz for the Morlet wavelet.
Frq = centfrq('morl')./scales;
You can also use scal2frq to convert scales to approximate frequencies in hertz.

See Also
scal2frq | wavefun
Introduced before R2006a

cfs2wpt

Wavelet packet tree construction from coefficients

Syntax

Description

CFS2WPT builds a wavelet packet tree (T) and the related analyzed signal or image (X) using the following input information:

WNAME: name of the wavelet used for the analysis
SIZE_OF_DATA: size of the analyzed signal or image
TN_OF_TREE: vector containing the terminal node indices of the tree
ORDER: 2 for a signal or 4 for an image
CFS: coefficients used to reconstruct the original signal or image. CFS is optional. When CFS2WPT is used without the CFS input parameter, the wavelet packet tree structure (T) is generated, but all the tree coefficients are null (including X).

Examples

Build Wavelet Packet Tree

This example shows how to build a wavelet packet tree in two ways: 1.) By filling the wavelet packet tree with coefficients, and 2.) By creating the wavelet packet tree and using write

Load an image and obtain the wavelet packet decomposition down to level 2 with the 'sym4' wavelet.
load detail;
imagesc(X); colormap gray; title('Original Image');
$\mathrm{Tr}=$ wpdec2(X,2,'sym4');

Original Image

Read the coefficients from the wavelet packet tree. Add $N\left(0,40^{2}\right)$ noise to the coefficients and plot the new wavelet packet tree.

```
cfs = read(Tr,'allcfs');
noisyCfs = cfs + 40*rand(size(cfs));
noisyT = cfs2wpt('sym4',size(X),tnodes(Tr),4,noisyCfs);
plot(noisyT)
```


To illustrate building a wavelet packet tree using write, construct an admissible binary wavelet packet tree with terminal nodes [$\begin{array}{lll}2 & 3 & 9\end{array} 10$. The analyzing wavelet is 'sym4' and the signal length is 1024 .
tr = cfs2wpt('sym4',[1 1024],[2 39 10]',2);
Fill terminal nodes [3 9] with $N(0,1)$ coefficients.

```
sN = read(tr,'sizes',[3,9]);
sN3 = sN(1,:); sN9 = sN(2,:);
cfsN3 = randn(sN3);
cfsN9 = randn(sN9);
tr = write(tr,'cfs',3,cfsN3,'cfs',9,cfsN9);
```

Plot the resulting wavelet packet tree and synthesized signal.

```
plot(tr)
```


Introduced before R2006a

cgauwavf

Complex Gaussian wavelet

Syntax

```
[PSI,X] = cgauwavf(LB,UB,N)
[PSI,X] = gauswavf(LB,UB,N,P)
[PSI,X] = gauswavf(LB,UB,N,WAVNAME)
```


Description

[PSI, X] = cgauwavf(LB, UB,N) returns the $1^{\text {st }}$ order derivative of the complex-valued Gaussian wavelet, PSI, on an N-point regular grid, X, for the interval [LB, UB]. The effective support of the complex-valued Gaussian wavelets is [-5 5].
$[P S I, X]=$ gauswavf($\mathrm{LB}, \mathrm{UB}, \mathrm{N}, \mathrm{P}$) returns the $\mathrm{P}^{\text {th }}$ derivative. Valid values of P are integers from 1 to 8 .

The complex Gaussian function is defined as $C_{p} e^{-i x} e^{-x^{2}} . C_{p}$ is such that the 2 -norm of the $\mathrm{P}^{\text {th }}$ derivative of PSI is equal to 1 .
[PSI, X] = gauswavf(LB, UB, N, WAVNAME) uses the valid wavelet family short name WAVNAME plus the order of the derivative in a character vector, such as 'cgau4 '. To see valid character vectors for complex-valued Gaussian wavelets, use waveinfo('cgau') or use wavemngr ('read', 1) and refer to the Complex Gaussian section.

Examples

Create Complex Gaussian Wavelet

This example shows how to create a complex-valued Gaussian wavelet of order 4. The wavelet has an effective support of $[-5,5]$ and is constructed using 1,000 samples.

```
lb = -5;
```

```
ub = 5;
n = 1000;
order = 4;
[psi,x] = cgauwavf(lb,ub,n,order);
subplot(211)
plot(x,real(psi))
title('Real Part');
subplot(212)
plot(x,imag(psi))
title('Imaginary Part');
```


Imaginary Part

See Also

waveinfo

Introduced before R2006a

chgwdeccfs

Change multisignal 1-D decomposition coefficients

Syntax

```
DEC = chgwdeccfs(DEC,'ca',COEFS)
DEC = chgwdeccfs(DEC,'cd',COEFS,LEV)
DEC = chgwdeccfs(DEC,'all',CA,CD)
DEC = chgwdeccfs(DEC,'all',V)
DEC = chgwdeccfs(...,IDXSIG)
```


Description

DEC = chgwdeccfs(DEC, 'ca', COEFS) replaces the approximation coefficients at level DEC. level with those contained in the matrix COEFS. If COEFS is a single value V, all coefficients are replaced by V.

DEC $=$ chgwdeccfs(DEC, 'cd', COEFS, LEV) replaces the detail coefficients at level LEV with those contained in the matrix COEFS. If COEFS is a single value V, then LEV can be a vector of levels and all the coefficients that belong to these levels are replaced by V. LEV must be such that $1 \leq$ LEV \leq DEC. level

DEC = chgwdeccfs(DEC, 'all', CA,CD) replaces all the approximation and detail coefficients. CA must be a matrix and CD must be a cell array of length DEC. level.

If COEFS (or $C A$ or $C D$) is a single number, then it replaces all the related coefficients. Otherwise, COEFS (or CA, or CD) must be a matrix of appropriate size.

For a real value $V, D E C=$ chgwdeccfs (DEC, 'all',V) replaces all the coefficients by V.

DEC = chgwdeccfs(..., IDXSIG) replaces the coefficients for the signals whose indices are given by the vector IDXSIG. If the initial data are stored row-wise or columnwise in a matrix X, then IDXSIG contains the row or column indices, respectively, of the data.

Examples

```
% Load original 1D-multisignal
load thinker
% Perform a decomposition at level }2\mathrm{ using wavelet db2
dec = mdwtdec('r',X,2,'db2');
% Change the coefficients of details at level 1.
% Replace all values by 0.
decBIS = chgwdeccfs(dec,'cd',0,1);
% Change the coefficients of details at level 1 and
% level }2\mathrm{ for signals 31 to 35. Replace all values by 0.
decTER = chgwdeccfs(dec,'cd',0,1:2,31:35);
% Compare original and new coefficients for details
% at level 1 for signals 31 to 35.
plot(dec.cd{1}(31:35,:)','b'); hold on;
plot(decTER.cd{1}(31:35,:)','r')
```


See Also

mdwtdec | mdwtrec
Introduced in R2007a

cmddenoise

Interval-dependent denoising

Syntax

```
sigden = cmddenoise(sig,wname,level)
sigden = cmddenoise(sig,wname,level,sorh)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter,thrParamsIn)
[sigden,coefs] = cmddenoise(____)
[sigden,coefs,thrParamsOut] = cmddenoise( ___)
[sigden,coefs,thrParamsOut,int_DepThr_Cell] = cmddenoise(sig,wname,
level,sorh,nb_inter)
[sigden,coefs,thrParamsOut,int_DepThr_Cell,BestNbofInt] =
cmddenoise(sig,wname,level,sorh,nb_inter)
```


Description

sigden = cmddenoise(sig,wname,level) returns the denoised signal, sigden, obtained from an interval-dependent denoising of the signal, sig, using the orthogonal or biorthogonal wavelet and scaling filters, wname. cmddenoise thresholds the wavelet (detail) coefficients down to level, level, and reconstructs a signal approximation using the modified detail coefficients. cmddenoise partitions the signal into intervals based on variance change points in the first level detail coefficients and thresholds each interval separately. The location and number of variance change points are automatically selected using a penalized contrast function [2]. The minimum delay between change points is 10 samples. Thresholds are obtained using a minimax threshold rule and soft thresholding is used to modify the wavelet coefficients [1] .
sigden = cmddenoise(sig,wname,level,sorh) returns the denoised signal, sigden, using the thresholding method, sorh, to modify the wavelet coefficients. Valid choices for sorh are ' s ' for soft thresholding or ' h ' for hard thresholding.
sigden = cmddenoise(sig, wname,level, sorh, nb_inter) returns the denoised signal, sigden, with the number of denoising intervals as a positive integer between

1 and 6: $1 \leq$ nb_inter ≤ 6. For nb_inter ≥ 2, cmddenoise estimates the location of the change points with a contrast function [2].
sigden = cmddenoise(sig,wname,level,sorh, nb_inter,thrParamsIn) returns the denoised signal, sigden, with the denoising intervals and corresponding thresholds specified as a cell array of matrices with length equal to level. Each element of the cell array contains the interval and threshold information for the corresponding level of the wavelet transform. The elements of thrParamsIn are N -by-3 matrices with N equal to the number of intervals. The 1st and 2nd columns contain the beginning and ending indices of the intervals and the 3rd column contains the corresponding threshold value. If you specify thrParamsIn, cmddenoise ignores the value of nb_inter.
[sigden, coefs] = cmddenoise(___) returns the approximation (scaling) and detail (wavelet) coefficients, coefs. The organization of coefs is identical to the structure returned by wavedec. This syntax can include any of the input arguments used in previous syntaxes.
[sigden, coefs, thrParamsOut] = cmddenoise (__) returns a cell array, thrParamsOut, with length equal to level. Each element of thrParamsOut is an N-by- 3 matrix. The row dimension of the matrix elements is the number of intervals and is determined by the value of the input arguments. Each row of the matrix contains the beginning and end points (indices) of the thresholded interval and the corresponding threshold value.
[sigden, coefs,thrParamsOut,int_DepThr_Cell] = cmddenoise(sig, wname, level, sorh, nb_inter) returns a cell array, int_DepThr_Cell, with length equal to 6. int_DepThr_Cell contains interval and threshold information assuming the number of change points ranges from 0 to 5 . The N-th element of int_DepThr_Cell is a N-by-3 matrix containing the interval information assuming N - 1 change points. Each row of the matrix contains the beginning and end points (indices) of the thresholded interval and the corresponding threshold value. Attempting to output int_DepThr_Cell if you use the input argument, thrParamsIn, results in an error.
[sigden, coefs,thrParamsOut,int_DepThr_Cell,BestNbofInt] = cmddenoise(sig, wname, level, sorh, nb_inter) returns the optimal number of signal intervals based on the estimated variance change points in the level-1 detail coefficients. To estimate the number of change points, cmddenoise assumes the total number is less than or equal to 6 and uses a penalized contrast [2]. Attempting to output BestNbofInt if you use the input argument, thrParamsIn, results in an error.

Examples

Denoising Blocks Signal with Haar Wavelet

Load the noisy blocks signal, nblocr1.mat. The signal consists of a piecewise constant signal in additive white Gaussian noise. The variance of the additive noise differs in three disjoint intervals.
load nblocr1;
Apply interval-dependent denoising down to level 4 using the Haar wavelet. |cmddenoise automatically determines the optimal number and locations of the variance change points. Plot the denoised and original signal for comparison.

```
sigden = cmddenoise(nblocr1,'db1',4);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
```


Denoising Blocks Signal with Hard Thresholding

Load the noisy blocks signal, nblocr1.mat. The signal consists of a piecewise constant signal in additive white Gaussian noise. The variance of the additive noise differs in three disjoint intervals.

```
load nblocr1;
```

Apply interval-dependent denoising down to level 4 using the Haar wavelet and a hard thresholding rule. cmddenoise automatically determines the optimal number and locations of the intervals. Plot the original and denoised signals.

```
sorh = 'h';
```

```
sigden = cmddenoise(nblocr1,'db1',4,sorh);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
legend('Original Signal','Denoised Signal','Location','NorthWest');
```


Specify the Number of Intervals

Create a signal sampled at 1 kHz . The signal consists of a series of bumps of various widths.

```
t = [0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81];
```

```
h = [4 4 -5 3 -4 5 -4.2 2.1 4.0.3 -3.1 
h = abs(h);
len = 1000;
w = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len);
x = zeros(1,len);
for j=1:11
    x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end
```

Add white Gaussian noise with different variances to two disjoint segments of the signal. Add zero-mean white Gaussian noise with variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add zero-mean white Gaussian noise with unit variance to the signal segment from 0.3 seconds to 1 second. Set the random number generator to the default settings for reproducible results.

```
rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;
sigden = cmddenoise(xx,'sym5',5,'s',2);
```

Apply interval-dependent denoising using the Daubechies' least-asymmetric wavelet with 5 vanishing moments down to level 3 . Set the number of intervals to 2 . Plot the noisy signal, original signal, and denoised signal for comparison.

```
sigden = cmddenoise(xx,'sym5',3,'s',2);
subplot(211)
plot(tt,xx); title('Noisy Signal');
subplot(212)
plot(tt,x,'k-.','linewidth',2);
hold on;
plot(tt,sigden,'r','linewidth',2);
legend('Original Signal','Denoised Signal','Location','SouthEast');
```


Specify Intervals and Thresholds

Load the example signal nbumpr1.mat. The variance of the additive noise differs in three disjoint intervals.

```
load nbumpr1.mat;
```

Use a level-5 multiresolution analysis. Create a cell array of length 5 consisting of 3-by-3 matrices. The first two elements of each row contain the beginning and ending indices of the interval and the last element of each row is the corresponding threshold.

```
wname = 'sym4';
level = 5;
sorh = 's';
```

```
thrParamsIn = {...
    [...
    1 207 1.0482; ...
    207 613 2.5110; ...
    613 1024 1.0031; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 3.8718; ...
    613 1024 1.04824; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 1.99710; ...
    613 1024 1.65613; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 2.09117; ...
    613 1024 1.04824; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 1.78620; ...
    613 102 1.04824; ...
    ]; ...
    };
```

Denoise the signal using the threshold settings and the Daubechies' least-asymmetric wavelet with 4 vanishing moments. Use a soft thresholding rule. Plot the noisy and denoised signals for comparison.

```
wname = 'sym4';
level = 5;
sorh = 's'; sigden = cmddenoise(nbumpr1,wname,level,sorh,...
    NaN,thrParamsIn);
plot(nbumpr1); hold on;
plot(sigden,'r','linewidth',2); axis tight;
legend('Noisy Signal','Denoised Signal','Location','NorthEast');
```


Return Denoised Wavelet Coefficients

Load the example signal nblocr1.mat. Use the Haar wavelet and decompose the signal down to level 2. Obtain the discrete wavelet transform and denoise the signal. Return the wavelet coefficients of the noisy and denoised signals.

```
load nblocr1.mat;
[sigden,coefs] = cmddenoise(nblocr1,'db1',2);
[C,L] = wavedec(nblocr1,2,'db1');
```

Plot reconstructions based on the level-2 approximation and level-2 and level-1 detail coefficients for the noisy signal.

```
app = wrcoef('a',C,L,'db1',2);
```

```
        subplot(3,1,1);
        plot(app); title('Approximation Coefficients');
        for nn = 1:2
        det = wrcoef('d',C,L,'db1',nn);
        subplot(3,1,nn+1)
        plot(det); title(['Noisy Wavelet Coefficients - Level '...
            num2str(nn)]);
end
```

Approximation Coefficients

Noisy Wavelet Coefficients - Level 1

Plot reconstructions based on the approximation and detail coefficients for the denoised signal at the same levels.
figure;
app $=$ wrcoef('a',coefs,L,'db1',2);

```
subplot(3,1,1);
plot(app); title('Approximation Coefficients');
for nn = 1:2
        det = wrcoef('d',coefs,L,'db1',nn);
        subplot(3,1,nn+1)
        plot(det);
        title(['Thresholded Wavelet Coefficients-Level '...
            num2str(nn)]);
end
```

Approximation Coefficients

Thresholded Wavelet Coefficients-Level 1

Thresholded Wavelet Coefficients-Level 2

The approximation coefficients are identical in the noisy and denoised signal, but most of the detail coefficients in the denoised signal are close to zero.

Output Intervals and Thresholds

Create a signal sampled at 1 kHz . The signal consists of a series of bumps of various widths.

```
t = [0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81];
h = [[4 -5 3 [-4 5 -4.2 2.1 4.3 -3.1 5.1 -4.2];
h = abs(h);
len = 1000;
w = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len); x = zeros(1,len);
for j=1:11
    x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end
plot(tt,x);
title('Original Signal');
hold on;
```


Original Signal

Add white Gaussian noise with different variances to two disjoint segments of the signal. Add zero-mean white Gaussian noise with variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add zero-mean white Gaussian noise with unit variance to the signal segment from 0.3 seconds to 1 second. Set the random number generator to the default settings for reproducible results.

```
rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;
plot(tt,xx);
title('Noisy Signal');
```

Noisy Signal

Apply interval-dependent denoising using the Daubechies' least- asymmetric wavelet with 4 vanishing moments down to level 5 . Automatically choose the number of intervals and output the result.
[sigden, coefs,thrParamsOut] = cmddenoise(xx,'sym4',5); thrParamsOut $\{1\}$
ans $=$
$1.0 e+03$ *

0.0010	0.2930	0.0036
0.2930	1.0000	0.0028

cmdnoise identifies one variance change point in the 1st level detail coefficients defining two intervals. The first interval contains samples 1 to 293 . The second interval contains samples 293 to 1000 . This is close to the true variance change point, which occurs at sample 299.

Partition Signal into Increasing Numbers of Intervals with Thresholds

Load the example signal, nbumpr1.mat. Partition the signal into 1 to 6 intervals assuming 0 to 5 change points. Compute the thresholds for each interval. Using the Daubechies' least-asymmetric wavelet with 4 vanishing moments return the intervals and corresponding thresholds. Display the results.

```
load nbumpr1.mat;
[sigden,~,~,int_DepThr_Cell] = cmddenoise(nbumpr1,'sym4',1);
format bank;
disp(' Begin End Threshold ');
cellfun(@disp,int_DepThr_Cell,'UniformOutput',false);
\begin{tabular}{lcc} 
Begin & End & Threshold \\
1.00 & 1024.00 & 1.36
\end{tabular}
    1.00 613.00 1.73
    613.00 1024.00 1.00
    1.00 207.00 1.05
    207.00 613.00 2.51
    613.00 1024.00 1.00
    1.00 207.00 1.05
    207.00 597.00 2.52
    597.00 627.00 1.69
    627.00 1024.00 0.97
    1.00 207.00 1.05
    207.00 613.00 2.51
    613.00 695.00 1.20
    695.00 725.00 0.59
    725.00 1024.00 1.05
    1.00 207.00 1.05
    207.00 597.00 2.52
    597.00 627.00 1.69
```

627.00	695.00	1.19
695.00	725.00	0.59
725.00	1024.00	1.05

Detect Number of Change Points

Load the example signal, nbumpr1.mat. The signal has two variance change points, which results in three intervals. Use cmddenoise to detect the number of change points.

```
load nbumpr1.mat;
[sigden,~,thrParamsOut,~,bestNbofInt] = ...
    cmddenoise(nbumpr1, 'sym4',1);
fprintf('Found %d change points.\n',bestNbofInt-1);
Found 2 change points.
```


Input Arguments

sig - Signal for interval-dependent denoising

1-D row or column vector
Input signal, specified as a 1-D row or column vector. sig is the real-valued input signal for interval-dependent denoising. The elements of sig are assumed to be equally spaced in time or space. If sig contains unequally-sampled data, cmddenoise is not appropriate. Use a lifting transform instead. See lwt for details.

Data Types: double

wname - Wavelet name

character vector
Wavelet name, specified as a character vector. wname is any valid orthogonal or biorthogonal wavelet. You can use the command: wtype = wavemngr('fields', wname,'type', 'file'); to determine if the wavelet name is valid to use with cmddenoise. Valid wavelet names return a 1 or 2 for wtype.

Example: 'bior2.2', 'db4', 'sym4'
Data Types: char

level - Level of the decimated wavelet transform (multiresolution analysis)
 positive integer

Wavelet transform (multiresolution analysis) level, specified as a positive integer. level gives the level of the multiresolution decomposition of the input signal using the decimated 1-D discrete wavelet transform, wavedec.

Data Types: double

sorh - Threshold rule

's' (default) | 'h'
Thresholding rule, specified as a character array. sorh is the threshold rule used in the modification of the detail coefficients. Valid choices for sorh are 's' (default) and 'h' for soft and hard thresholding.

```
nb_inter - Number of intervals
positive integer in the set {1,2,3,4,5,6}| NaN
```

Number of intervals, specified as a positive integer less than 7. cmddenoise divides the input signal into nb _inter intervals. cmddenoise determines the location of the nb_inter change points using a contrast function [2]. If you enter NaN for nb_inter, cmddenoise ignores the input. If you use the input argument thrParamsIn, cmddenoise disregards any value you enter for nb_inter.
Data Types: double

thrParamsIn - Intervals and thresholds by level

cell array of matrices
Intervals and thresholds by level, specified as a cell array of matrices equal in length to level. Each element of thrParams In contains the interval and threshold information for the corresponding level of the multiresolution analysis. The elements of thrParamsIn are N -by- 3 matrices with N equal to the number of intervals. The 1st and 2 nd columns contain the beginning and ending indices of the intervals and the 3rd column contains the corresponding threshold value. If you specify thrParamsIn, you cannot specify the output arguments int_DepThr_Cell or BestNbofInt.
Data Types: cell

Output Arguments

sigden - Denoised signal

1-D row or column vector
sigden is the denoised version of the input sig. sigden is a 1-D row vector equal in length to sig.

coefs - Approximation coefficients and thresholded wavelet coefficients

1-D row vector of approximation coefficients and thresholded wavelet coefficients

coefs is a row vector of approximation (scaling) and thresholded detail (wavelet) coefficients. The ordering of the approximation and detail coefficients by level in coefs is the same as the output of wavedec. cmddenoise does not apply thresholding to the approximation coefficients.

Data Types: double

thrParamsOut - Intervals and thresholds by level
 cell array of matrices

thrParamsOut is a cell array of matrices equal in length to level. Each element of the cell array contains the interval and threshold information for the corresponding level of the multiresolution analysis. The elements of thrParamsOut are N-by-3 matrices with N equal to the number of intervals. N is determined by the value of the input arguments. The 1st and 2nd columns contain the beginning and ending indices of the intervals and the 3 rd column contains the corresponding threshold value.

Data Types: cell

int_DepThr_Cell - Intervals and thresholds assuming 0 to 5 change points

cell array of matrices
int_DepThr_Cell contains interval and threshold information assuming the number of change points ranges from 0 to 5 . The N-th element of int_DepThr_Cell is a N -by- 3 matrix containing the interval information assuming $\mathrm{N}-1$ change points. Each row of the matrix contains the beginning and ending indices of the thresholded interval and the corresponding threshold value. Attempting to output int_DepThr_Cell if you input the number of intervals and thresholds, thrParams In, results in an error. int_DepThr_Cell\{BestNbofInt\} or int_DepThr_Cell\{nb_inter\} is equal to the matrix elements of thrParamsOut.
Data Types: cell
BestNbofint - Optimal number of intervals
positive integer ≤ 6
BestNbofInt is the optimal number of intervals based on estimated change points in the variance of the level- 1 detail coefficients. The number and location of the change
points are estimated using a penalized contrast method [2]. Attempting to output BestNbofInt if you input the number of intervals and thresholds, thrParamsIn, results in an error.

References

[1] Donoho, D. and Johnstone, I. "Ideal spatial adaptation by wavelet shrinkage", Biometrika, 1994, 81,3, 425-455.
[2] Lavielle, M. "Detection of multiple changes in a sequence of dependent variables", Stochastic Processes and their Applications, 1999, 83, 79-102.

See Also
thselect | wavedec | wthresh | wvarchg
Introduced in R2010a

cmorwavf

Complex Morlet wavelet

Syntax

[PSI, X] = cmorwavf(LB, UB, N,FB,FC)

Description

[PSI, X] = cmorwavf(LB, UB, N, FB, FC) returns values of the complex Morlet wavelet defined by a positive bandwidth parameter $F B$, a wavelet center frequency $F C$, and the expression

```
PSI (X) = ((pi*FB)^(-0.5))*exp(2*i*pi*FC*X)*exp(-X^2/FB)
```

on an N point regular grid for the interval $[L B, U B]$.
Output arguments are the wavelet function PSI computed on the grid X.

Examples

Complex Morlet Wavelet

Construct a complex-valued Morlet wavelet with a bandwidth parameter of 1.5 and a center frequency of 1 . Set the effective support to $[-8,8]$ and the length of the wavelet to 1000.

```
N = 1000;
Lb = -8;
Ub = 8;
fb = 1.5;
fc = 1;
[psi,x] = cmorwavf(Lb,Ub,N,fb,fc);
```

Plot the real and imaginary parts of the wavelet.

```
    subplot(2,1,1)
    plot(x,real(psi)); title('Real Part');
    subplot(2,1,2)
    plot(x,imag(psi)); title('Imaginary Part');
```


Imaginary Part

References

Teolis, A. (1998), Computational signal processing with wavelets, Birkhauser, p. 65.

See Also

waveinfo

Introduced before R2006a

coifwavf

Coiflet wavelet filter

Syntax

F = coifwavf(W)

Description

$F=\operatorname{coifwavf}(W)$ returns the scaling filter associated with the Coiflet wavelet specified by the character vector W where $W=$ 'coifN'. Possible values for N are $1,2,3,4$, or 5 .

Examples

```
% Set coiflet wavelet name.
wname = 'coif2';
% Compute the corresponding scaling filter.
f = coifwavf(wname)
f =
Columns 1 through 7
0.0116 -0.0293 -0.0476 0.2730 0.5747 0.2949 -0.0541
Columns 8 through 12
-0.0420 0.0167 0.0040-0.0013-0.0005
```


See Also

```
waveinfo
```

Introduced before R2006a

conofinf

Cone of influence

Syntax

```
cone = conofinf(wname,scales,LenSig,SigVal)
[cone,PL,PR] = conofinf(wname,scales,LenSig,SigVal)
[cone,PL,PR,PLmin, PRmax] = conofinf(wname,scales,LenSig,SigVal)
[PLmin,PRmax] = conofinf(wname,scales,LenSig)
[...] = conofinf(...,'plot')
```


Description

cone = conofinf(wname, scales,LenSig,SigVal) returns the cone of influence (COI) for the wavelet wname at the scales in scales and positions in SigVal. LenSig is the length of the input signal. If SigVal is a scalar, cone is a matrix with row dimension length(scales) and column dimension LenSig. If SigVal is a vector, cone is cell array of matrices.
[cone, PL, PR] = conofinf(wname, scales, LenSig, SigVal) returns the left and right boundaries of the cone of influence at scale 1 for the points in SigVal. PL and PR are length(SigVal)-by-2 matrices. The left boundaries are(1-PL(: , 2))./PL(:, 1) and the right boundaries are (1-PR(:,2))./PR(:,1).
[cone,PL,PR,PLmin, PRmax] = conofinf(wname,scales,LenSig,SigVal) returns the equations of the lines that define the minimal left and maximal right boundaries of the cone of influence. PLmin and PRmax are 1-by-2 row vectors where PLmin(1) and PRmax (1) are the slopes of the lines. PLmin(2) and PRmax (2) are the points where the lines intercept the scale axis.
[PLmin, PRmax] = conofinf(wname,scales,LenSig) returns the slope and intercept terms for the first-degree polynomials defining the minimal left and maximal right vertices of the cone of influence.
[...] = conofinf(...,'plot') plots the cone of influence.

Input Arguments

wname

wname is a character vector corresponding to a valid wavelet. To verify that wname is a valid wavelet, wavemngr('fields', wname) must return a struct array with a type field of 1 or 2 , or a nonempty bound field.

scales

scales is a vector of scales over which to compute the cone of influence. Larger scales correspond to stretched versions of the wavelet and larger boundary values for the cone of influence.

LenSig

LenSig is the signal length and must exceed the maximum of SigVal.

SigVal

SigVal is a vector of signal values at which to compute the cone of influence. The largest value of SigVal must be less than the signal length, LenSig.If SigVal is empty, conofinf returns the slope and intercept terms for the minimal left and maximal right vertices of the cone of influence.

Output Arguments

cone

cone isthe cone of influence. If SigVal is a scalar, cone is a matrix. The row dimension is equal to the number of scales and column dimension equal to the signal length, LenSig. If SigVal is a vector, cone is a cell array of matrices. The elements of each row of the matrix are equal to 1 in the interval around SigVal corresponding to the cone of influence.

PL

PL is the minimum value of the cone of influence on the position (time) axis.

PR

PR is the maximum value of the cone of influence on the position (time) axis.

PLmin

PLmin is a 1-by-2 row vector containing the slope and scale axis intercept of the line defining the minimal left vertex of the cone of influence. PLmin(1) is the slope and PLmin(2) is the point where the line intercepts the scale axis.

PRmax

PRmax is a 1-by-2 row vector containing the slope and scale axis intercept of the line defining the maximal right vertex of the cone of influence. PRmax (1) is the slope and PRmax (2) is the point where the line intercepts the scale axis.

Examples

Cone of influence for Mexican hat or Ricker wavelet:

```
load cuspamax
signal = cuspamax;
wname = 'mexh';
scales = 1:64;
lenSIG = length(signal);
x = 500;
figure;
cwt(signal,scales,wname,'plot');
hold on
[cone,PL,PR,Pmin,Pmax] = conofinf(wname,scales,lenSIG,x,'plot');
set(gca,'Xlim',[1 lenSIG])
```

Left minimal and right maximal vertices for the cone of influence (Morlet wavelet):

```
[PLmin,PRmax] = conofinf('morl',1:32,1024,[],'plot');
% PLmin = -0.1245*u+ 32.0000
% PRmax = 0.1250*u-96.0000
```


More About

Cone of Influence

Let $\Psi(t)$ be an admissible wavelet. Assume that the effective support of $\Psi(t)$ is $[-B, B]$. Letting u denote the translation parameter and s denote the scale parameter, the dilated and translated wavelet is:

$$
\psi_{u, s}(t)=\frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right)
$$

andhas effective support $[\mathrm{u}-\mathrm{sB}, \mathrm{u}+\mathrm{sB}]$. The cone of influence (COI) is the set of all t included in the effective support of the wavelet at a given position and scale. This set is equivalent to:

$$
|t-u| \leq s B
$$

At each scale, the COI determines the set of wavelet coefficients influenced by the value of the signal at a specified position.

- "Continuous and Discrete Wavelet Transforms"

References

Mallat, S. A Wavelet Tour of Signal Processing, London:Academic Press, 1999, p. 174.

See Also
cwt | wavsupport
Introduced in R2010b

cwt

Continuous 1-D wavelet transform

Compatibility

See cwt for information on the older version of the cwt. The older version is no longer recommended.

Syntax

```
wt = cwt(x)
wt = cwt(x,wname)
[wt,f] = cwt(___,fs)
[wt,period] = cwt(___,ts)
[wt,f,coi] = cwt(___,fs)
[wt,period,coi] = cwt(___,ts)
[___] = wtmm(___,Name,Value)
cwt(
```

\qquad

Description

$w t=c w t(x)$ returns the continuous wavelet transform (CWT). The input, x, must be a 1-D real-valued signal with at least four samples. cwt computes the continuous wavelet transform using the analytic Morse wavelet with a symmetry parameter of 3 and a timebandwidth product of 60 .
wt $=$ cwt (x, wname) uses the analytic wavelet specified by wname to compute the CWT. Valid options for wname are 'morse', 'amor', and 'bump', which specify the Morse, Morlet, and bump wavelet, respectively.
[wt,f] = cwt(\qquad , fs) specifies the sampling frequency, fs , in Hz as a positive scalar. cwt uses fs to determine the scale-to-frequency conversions and returns the
frequencies, f, in Hz . If you do not specify a sampling frequency, cwt returns f in cycles per sample. You can use this syntax with any of the arguments from the previous syntaxes.
[wt, period] = cwt (___,ts) specifies the sampling interval, ts, as a positive duration scalar. The duration can be in years, days, hours, minutes, or seconds. cwt uses ts to compute the scale-to period conversion and returns the time periods in period. The array of durations in period have the same format property as ts.
[wt,f,coi] = cwt(__,fs) returns the cone of influence, coi, which shows where edge effects of the CWT become significant. The cone of influence for the CWT is in Hz.
[wt,period,coi] = cwt(__, ts) returns the cone of influence, coi, which shows where edge effects of the CWT become significant. The cone of influence for the CWT is in cycles per sample.
[___] = wtmm (__ , Name, Value) returns the WTMM with additional options specified by one or more Name, Value pair arguments.
cwt (_ _) with no output arguments plots the CWT scalogram, which is the absolute value of the CWT as a function of time and frequency. The cone of influence is also plotted.

If you do not specify a sampling frequency, fs, or time interval, ts, the frequencies are plotted in cycles per sample. If you specify a sampling frequency, $f s$, the frequencies are in Hz . If you specify a sampling duration, the plot is a function of time and periods.

The y-axis of the scalogram uses a $\log _{2}$ scale. If you use a data cursor, the actual y-value is displayed. For example, if the axis value is approximately 0.125 , the data cursor y value is -3.01 , which you can verify using pow2 (3.01).

Examples

Continuous Wavelet Transform Using Default Values

Obtain the continuous wavelet transform of a speech sample using default values.
load mtlb;
w = cwt (mtlb);

Continuous Wavelet Transform Using Specified Wavelet

Obtain the continuous wavelet transform of a speech sample using the bump wavelet instead of the default Morse wavelet.

```
load mtlb;
cwt(mtlb,'bump',Fs);
```


Compare the result obtained from the CWT using the default Morse wavelet. cwt(mtlb,Fs);

Continuous Wavelet Transform of Two Sine Waves

Create two sine waves with frequencies of 32 and 64 Hz . The data is sampled at 1000 Hz . The two sine waves have disjoint support in time.

Fs = 1e3;
$\mathrm{t}=0: 1 / \mathrm{Fs}: 1$;
$x=\cos (2 * p i * 32 * t) . *(t>=0.1 \& t<0.3)+\sin (2 * p i * 64 * t) . *(t>0.7) ;$
Add white Gaussian noise with a standard deviation of 0.05.
wgnNoise $=0.05^{*}$ randn(size(t));
$x=x+w g n N o i s e ;$
Obtain and plot the cwt using a Morse wavelet.
$\operatorname{cwt}(x, 1000)$

Continuous Wavelet Transform of Earthquake Data

Obtain the CWT of Kobe earthquake data. The sampling frequency is 1 Hz .
load kobe;
Plot the earthquake data.

```
plot((1:numel(kobe))./60,kobe);
xlabel('mins');
ylabel('nm/s^2');
```

grid on
title('Kobe Earthquake Data');

Obtain the CWT, frequencies, and cone of influence.
[wt,f,coi] = cwt(kobe,1);
Plot the data, including the cone of influence.
cwt(kobe,1);

Obtain the CWT, time periods, and cone of influence by specifying a time duration instead of a sampling frequency.
[wt,periods,coi] = cwt(kobe,minutes(1/60));
View the same data by specifying a sampling period input instead of a frequency. cwt(kobe, minutes(1/60));

Input Arguments

x - Input signal
vector of real values
Input signal, specified as a row or column vector. x must be a 1-D, real-valued signal with at least four samples.
wname - Analytic wavelet
'morse' (default) | 'amor' | 'bump'

Analytic wavelet used to compute the CWT, specified as 'morse', 'amor', or 'bump '. These character vectors specify the analytic Morse, Morlet, or bump wavelet, respectively.

The default Morse wavelet uses a symmetry parameter, γ, that is equal to 3 and has a time-bandwidth product that of 60 .

fs - Sampling frequency

positive scalar
Sampling frequency, in Hz , specified as a positive scalar. If you specify fs , then you cannot specify ts.

ts - Time duration
 positive duration scalar

Time duration, also known as the sampling interval, specified as a positive duration scalar. Valid durations are years, days, hours, minutes, and seconds. You cannot use calendar durations. If you specify ts, then you cannot specify fs.
Example: wt $=$ cwt (x,hours(12))
Data Types: duration

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.

Example: 'ExtendSignal' , false indicates that the signal is not extended.

'ExtendSignal' - Extend input signal symmetrically
 true (default) | false

Option to extend the input signal symmetrically by reflection, specified as the commaseparated pair consisting of 'ExtendSignal' and either true or false. Extending the signal symmetrically can mitigate boundary effects. If you specify true, then the signal is extended. If you specify false, then the signal is not extended.

[^0]Number of voices per octave to use for the CWT, specified as the comma-separated pair consisting of 'VoicesPerOctave' and an even integer from 4 to 48 . The CWT scales are discretized using the specified number of voices per octave. The energy spread of the wavelet in frequency and time automatically determines the minimum and maximum scales.

'NumOctaves' - Number of octaves
 positive integer

Number of octaves, specified as the comma-separated pair consisting of 'NumOctaves ' and a positive integer. The number of octaves cannot exceed floor (log2 (numel $(x))$) - 1 . Specifying a NumOctaves value overrides the automatic determination of the maximum scale. If you do not need to examine lower frequency values, use a smaller NumOctaves value.

'TimeBandwidth ' - Time-bandwidth product of Morse wavelet 60 (default) | scalar greater than 3 and less than or equal to 120

Time-bandwidth product of the Morse wavelet, specified as the comma-separated pair consisting of 'TimeBandwidth' and a scalar greater than 3 and less than or equal to 120 . The symmetry parameter, gamma (γ), is fixed at 3 . Wavelets with larger timebandwidth products have larger spreads in time and narrower spreads in frequency.

If you specify 'TimeBandwidth', you cannot specify 'WaveletParameters'. To specify both the symmetry and time-bandwidth product, use 'WaveletParameters' instead.

'WaveletParameters ' - Symmetry and time-bandwidth product of Morse wavelet $(3,60)$ (default) | two-element vector of scalars

Symmetry and time-bandwidth product of Morse wavelet, specified as the commaseparated pair consisting of 'WaveletParameters' and a two-element vector of scalars.

The first element is the symmetry, γ, which must be greater than or equal to 1 . The second element is the time-bandwidth product which must be greater than γ. The ratio of the time-bandwidth product to γ cannot exceed 40 .

When γ is equal to 3 , the Morse wavelet is perfectly symmetric in the frequency domain and the skewness is 0 . When γ is greater than 3 , the skewness is positive. When γ is less than 3 , the skewness is negative.

If you specify 'WaveletParameters', you cannot specify 'TimeBandwidth'.

Output Arguments

wt - Continuous wavelet transform

matrix
Continuous wavelet transform, returned as a matrix of complex values. By default, cwt uses the analytic Morse $(3,60)$ wavelet, where 3 is the symmetry and 60 is the timebandwidth product. cwt uses 10 voices per octave. wt is an $N a$-by- N matrix, where $N a$ is the number of scales, and N is the number of samples in x . The minimum and maximum scales are determined automatically based on the energy spread of the wavelet in frequency and time. See "Algorithms" on page 1-90 for information on how the scales are determined.

Data Types: double
Complex Number Support: Yes

f - Frequencies

vector
Frequencies of the CWT, returned as a vector. If you specify a sampling frequency, fs, then f is in Hz . If you do not specify $f s, c w t$ returns f in cycles per sample.

period - Time periods

array
Time periods, returned as an array of durations. The durations are in the same format as ts. Each row corresponds to a period.

coi - Cone of influence

array of doubles | array of durations
Cone of influence for the CWT, returned as either an array of doubles or array of durations. The cone of influence indicates where edge effects occur in the CWT. If you specify a sampling frequency, fs , the cone of influence is in Hz . If you specify a time duration, ts, the cone of influence is in periods. Due to the edge effects, give less credence to areas that are outside or overlap the cone of influence.

More About

Algorithms

Minimum Scale

To determine the minimum scale, first obtain the Fourier transform, ω_{x} of the base wavelet. Then, find the peak frequency of that transformed data. For Morse wavelets, dilate the wavelet so that the Fourier transform of the wavelet at π radians is equal to 10% of the peak value. The smallest scale occurs at the largest frequency:

$$
s_{0}=\frac{\omega_{x}^{\prime}}{\pi}
$$

As a result, the smallest scale is the minimum of $\left(2, s_{0}\right)$. For Morse wavelets, the smallest scale is usually s_{0}. For the Morlet wavelet, the smallest scale is usually 2.

Maximum Scale

Both the minimum and maximum scales of the CWT are determined automatically based on the energy spread of the wavelet in frequency and time. To determine the maximum scale, CWT uses the following algorithm.

The standard deviation of the Morse wavelet in time, σ_{t}, is approximately $\sqrt{\frac{P}{2}}$, where P is the time-bandwidth product. The standard deviation in frequency, σ_{f}, is approximately $\frac{1}{2} \sqrt{\frac{2}{P}}$. If you scale the wavelet by some $s>1$, he time duration changes to $2 s \sigma_{t}=N$, which is the wavelet stretched to equal the full length (N samples) of the input. You cannot translate this wavelet or stretch it further without causing it to wrap, so the largest scale is floor $\left(\frac{N}{2 \sigma_{t}}\right)$.

Wavelet transform scales are powers of 2 and are denoted by $s_{0}\left(2^{\frac{1}{N V}}\right)^{j} . N V$ is the number of voices per octave, and j is from 0 to the largest scale. For a specific small scale, s_{0} :

$$
s_{0}\left(2^{\frac{1}{N V}}\right)^{j} \leq \frac{N}{2 \sigma_{t}}
$$

Converting to log2:

$$
\begin{aligned}
& j \log _{2}\left(2^{\frac{1}{N V}}\right) \leq \log _{2}\left(\frac{N}{2 \sigma_{t} s_{0}}\right) \\
& j \leq N V \log _{2} \frac{N}{2 \sigma_{t} s_{0}}
\end{aligned}
$$

Therefore, the maximum scale is

$$
2^{\text {floor }\left(N V \log _{2} \frac{N}{2 \sigma_{t} s_{0}}\right)}
$$

L1 Norm for CWT

Wavelet transforms commonly use L2 normalization of the wavelet. For the L2 norm, dilating a signal by $1 / s$, where s is greater than 0 , is defined as follows:

$$
\left\|\left.x\left(\frac{t}{s}\right)\right|_{2} ^{2}=s\right\| x(t) \|_{2}^{2}
$$

The energy is now s times the original energy. To preserve the energy of the original signal, you must multiply the CWT by $1 / \sqrt{s}$. When included in the Fourier transform,
multiplying by this factor produces different weights being applied to different scales, so that the peaks at higher frequencies are reduced more than the peaks at lower frequencies.

In many applications, L1 normalization is better. The L1 norm definition does not include squaring the value, so the preserving factor is $1 / s$ instead of $1 / \sqrt{s}$. Instead of high-frequency amplitudes being reduced as in the L2 norm, for L1 normalization, all frequency amplitudes are normalized to the same value. Therefore, using the L1 norm shows a more accurate representation of the signal.

- "Continuous and Discrete Wavelet Transforms"
- "1-D Continuous Wavelet Analysis"
- "Time-Frequency Analysis with the Continuous Wavelet Transform"
- "Morse Wavelets"

References

[1] Lilly, J. M., and S. C. Olhede. "Generalized Morse Wavelets as a Superfamily of Analytic Wavelets." IEEE Transactions on Signal Processing. Vol. 60, No. 11, 2012, pp. 6036-6041.
[2] Lilly, J. M., and S. C. Olhede. "Higher-Order Properties of Analytic Wavelets." IEEE Transactions on Signal Processing. Vol. 57, No. 1, 2009, pp. 146-160.
[3] Lilly, J. M. jLab: A data analysis package for Matlab, version 1.6.2. 2016. http:// www.jmlilly.net/jmlsoft.html.

See Also

cwt | duration | dwt | icwt | wavedec | wavefun | waveinfo | wcodemat
Introduced in R2016b

cwt

Continuous 1-D wavelet transform

Compatibility

This version of cwt is no longer recommended. Use the updated cwt instead.

Syntax

```
coefs = cwt(x,scales,'wname')
coefs = cwt(x,scales,'wname','plot')
coefs = cwt(x,scales,'wname','coloration')
coefs = cwt(x,scales,'wname','coloration',xlim)
[coefs,sgram] = cwt(x,scales,'wname','scal')
[coefs,sgram] = cwt(x,scales,'wname','scalCNT')
[coefs,frequencies] = cwt(x,scales,wname, samplingperiod)
[coefs,sgram,frequencies] = cwt(x,scales,wname,
samplingperiod,'scal')
```


Description

coefs = cwt(x,scales,'wname') returns the continuous wavelet transform (CWT) of the real-valued signal S . The wavelet transform is computed for the specified scales using the analyzing wavelet wname. scales is a 1-D vector with positive elements. The character vector wname denotes a wavelet recognized by wavemngr. coefs is a matrix with the number of rows equal to the length of scales and number of columns equal to the length of the input signal. The k-th row of coefs corresponds to the CWT coefficients for the k -th elemens in the scales vector.
coefs = cwt(x,scales,'wname','plot') plots the continuous wavelet transform coefficients, using default coloration 'absglb'.
coefs $=$ cwt(x,scales,'wname','coloration') uses the specified coloration. See "Definitions" on page 1-96 for coloration options.
coefs $=$ cwt(x,scales,'wname', 'coloration', xlim) colors the coefficients using coloration and $x \lim$, where $x \lim$ is a vector, [$x 1 \quad x 2$], with $1 \leq x 1<x 2 \leq$ length (x).
[coefs,sgram] = cwt(x,scales,'wname','scal') returns and plots the scalogram. 'scal' produces an image plot of the scalogram.
[coefs,sgram] = cwt(x,scales,'wname','scalCNT') displays a contour representation of the scalogram.
[coefs,frequencies] = cwt(x,scales,wname, samplingperiod) returns the frequencies in cycles per unit time corresponding to the scales and the analyzing wavelet wname. samplingperiod is a positive real-valued scalar. If the units of samplingperiod are seconds, the frequencies are in hertz.
[coefs,sgram,frequencies] = cwt(x,scales,wname, samplingperiod, 'scal') returns the scalogram and the frequencies corresponding to the scales and the analyzing wavelet. If you have at least two elements in scales, you can also use the flag 'scalCNT' to output the scalogram. The samplingperiod is only used in the conversion of scales to frequencies. Specifying samplingperiod does not affect the appearance of plots generated by cwt.

Examples

Plot the continuous wavelet transform and scalogram using sym2 wavelet at all integer scales from 1 to 32, using a fractal signal as input:

```
load vonkoch
vonkoch=vonkoch(1:510);
len = length(vonkoch);
cw1 = cwt(vonkoch,1:32,'sym2','plot');
title('Continuous Transform, absolute coefficients.')
ylabel('Scale')
[cw1,sc] = cwt(vonkoch,1:32,'sym2','scal');
title('Scalogram')
ylabel('Scale')
```

Compare discrete and continuous wavelet transforms, using a fractal signal as input:

```
load vonkoch
vonkoch=vonkoch(1:510);
len=length(vonkoch);
[c,l]=wavedec(vonkoch,5,'sym2');
```

```
% Compute and reshape DWT to compare with CWT.
cfd=zeros(5,len);
for k=1:5
    d=detcoef(c,l,k);
    d=d(ones(1,2^k),:);
    cfd(k,:)=wkeep(d(:)',len);
end
cfd=cfd(:);
I=find(abs(cfd) <sqrt(eps));
cfd(I)=zeros(size(I));
cfd=reshape(cfd,5,len);
% Plot DWT.
subplot(311); plot(vonkoch); title('Analyzed signal.');
set(gca,'xlim',[0 510]);
subplot(312);
image(flipud(wcodemat(cfd,255,'row')));
colormap(pink(255));
set(gca, yticklabel',[]);
title('Discrete Transform,absolute coefficients');
ylabel('Level');
% Compute CWT and compare with DWT
subplot(313);
ccfs=cwt(vonkoch,1:32,'sym2','plot');
title('Continuous Transform, absolute coefficients');
set(gca,'yticklabel',[]);
ylabel('Scale');
```


More About

Scale Values

Scale values determine the degree to which the wavelet is compressed or stretched. Low scale values compress the wavelet and correlate better with high frequencies. The low scale CWT coefficients represent the fine-scale features in the input signal vector. High scale values stretch the wavelet and correlate better with the low frequency content of the signal. The high scale CWT coefficients represent the coarse-scale features in the input signal.

Coloration

Coloration is the method used to scale the coefficient values for plotting. Each coefficient is divided by the resulting coloration value.

- 'lvl' - uses maximum value in each scale
- 'glb' - uses maximum value in all scales
- 'abslvl' or 'lvlabs' - uses maximum absolute value in each scale
- 'absglb' or 'glbabs' - uses maximum absolute value in all scales
- 'scal' - produces a scaled image of the scalogram
- 'scalCNT ' - produces a contour representation of the scalogram

For 3-D plots (surfaces), use the coloration parameter preceded by '3D', such as coefs = cwt(...,'3Dplot') or coefs = cwt(...,'3Dlvl') ...

Scalogram

Scalograms are plots that represent the percentage energy for each coefficient.

References

Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.

Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.

See Also
cwt | dwt | wavedec | wavefun | waveinfo | wcodemat
Introduced before R2006a

cwift

Continuous wavelet transform using FFT algorithm

Compatibility

This function is no longer recommended. Use cwt instead.

Syntax

```
cwtstruct = cwtft(sig)
```

cwtstruct $=$ cwtft(sig, Name, Value)
cwtstruct = cwtft(...,'plot')

Description

cwtstruct $=$ cwtft(sig) returns the continuous wavelet transform (CWT) of the $1-$ D input signal sig. cwtft uses an FFT algorithm to compute the CWT. sig can be a vector, a structure array, or a cell array. If the sampling interval of your signal is not equal to 1 , you must input the sampling period with sig in a cell array or a structure array to obtain correct results. If sig is a cell array, sig\{1\} is equal to your signal and sig\{2\} is equal to the sampling interval. If sig is a structure array, the field sig.val contains your signal and sig. period contains the sampling interval.

By default, cwtft uses the analytic Morlet wavelet. See More About for descriptions of valid analyzing wavelets.

For additional default values, see scales in "Name-Value Pair Arguments" on page 1-99.
cwtstruct = cwtft(sig, Name, Value) returns the continuous wavelet transform (CWT) of the 1-D input signal sig with additional options specified by one or more Name, Value pair arguments. See "Name-Value Pair Arguments" on page 1-99 for a comprehensive list.
cwtstruct $=$ cwtft(...,'plot') plots the continuous wavelet transform. If the analyzing wavelet is real-valued, the original signal along with the CWT coefficient
magnitudes and signed CWT coefficients are plotted. If the analyzing wavelet is complexvalued, the original signal is plotted along with the moduli, real parts, imaginary parts, and angles of the CWT coefficients. You can select the radio button in the bottom left of the plot to superimpose the signal's reconstruction using icwtft.

Input Arguments

sig

The $1-\mathrm{D}$ input signal. sig can be a vector, a structure array, or a cell array. If sig is a structure array, sig contains two fields: val and period. sig.val is the signal vector and sig.period is the sampling period. If sig is a cell array, sig\{1\} is the signal vector and sig\{2\} is the sampling period.

If sig is a vector, the sampling period defaults to 1 .

Note: If the sampling interval of your input signal is not 1, you must input the sampling interval with sig in a cell array or structure array to obtain correct results. If sig is a cell array, $\operatorname{sig}\{1\}$ is the $1-\mathrm{D}$ input signal and $\operatorname{sig}\{2\}$ is the sampling period. If sig is a structure array, the field sig. val is the 1-D input signal and sig.period is the sampling interval.

Name-Value Pair Arguments

'scales'
Scales over which to compute the CWT. The value of scales can be a vector, a structure array, or a cell array. If scales is a structure array, it contains at most five fields. The first three fields are mandatory. The last two fields are optional.

1 s0 - The smallest scale. The default s0 depends on the wavelet. See the More About for descriptions of the default for each wavelet.
2 ds - Spacing between scales. The default ds depends on the wavelet. See the More About for descriptions of the default for eacj wavelet. You can construct a linear or logarithmic scale vector using ds. See type for a description of the type of spacing.

3 nb - Number of scales. The default nb depends on the wavelet. See the More About for descriptions of the default for each wavelet.

4 type - Type of spacing between scales. type can be one of 'pow' or 'lin'. The default is 'pow'. If type is equal to 'pow', the CWT scales are s0*pow.^($0: n b-1)$ *ds). This results in a constant spacing of ds if you take the logarithm to the base power of the scales vector. If type is equal to 'lin', the CWT scales are linearly spaced by $\mathrm{s} 0+(0: n b-1) * d s$.

Use the default power of two spacing to ensure an accurate approximation to the original signal based only on select scales. See the second example in "Examples" on page 1-101 for a signal approximation based on select scales.
5 pow - The base for 'pow' spacing. The default is 2 . This input is valid only if the type argument is 'pow'.

If scales is a cell array, the first three elements of the cell array are identical to the first three elements of the structure array described in the preceding list. The last two elements of the cell array are optional and match the two optional inputs in the structure array described in the preceding list.

'wavelet'

Analyzing wavelet. To include a parameter for the wavelet, use a cell array. For example, to specify a fourth order derivative of a Gaussian wavelet, use 'wavelet' , \{ 'dog ' , 4\} as in cwtstruct $=($ sig, 'wavelet', \{'dog', 4\}).

The supported analyzing wavelets are:

- 'dog ' - m-th order derivative of a Gaussian wavelet where m is a positive even integer. The default value of m is 2 , which is the Mexican hat or Ricker wavelet..
- 'morl' - Morlet wavelet. Results in an analytic Morlet wavelet. The Fourier transform of an analytic wavelet is zero for negative frequencies.
- 'morlex' - non-analytic Morlet wavelet
- 'morl0' - non-analytic Morlet wavelet with zero mean
- 'mexh' - Mexican hat wavelet, which is also known as the Ricker wavelet. The Mexican hat wavelet is a special case of the m-th order derivative of a Gaussian wavelet with $m=2$.
- 'paul' - Paul wavelet
- 'bump' - Bump wavelet

See the More About for formal definitions of the supported analyzing wavelets and associated defaults.

Default: 'morl'
'padmode'
Signal extension mode. See dwtmode for supported extension modes. By default, cwtft does not extend the signal prior to computing the CWT. In a Fourier-transform-based CWT algorithm, extending a signal can mitigate wrap-around effects. The number of CWT coefficients in each row of the output matrix cwtstruct.cfs is truncated to match the length of the input signal.

Output Arguments

cwtstruct

A structure array with six fields. The fields of the structure array are:

- cfs - The CWT coefficient matrix. cwtstruct.cfs is an nb-by-N matrix where nb is the number of scales and N is the length of the input signal.
- scales - Vector of scales at which the CWT is computed. The length of cwtstruct.scales is equal to the row dimension of cwtstruct.cfs.
- frequencies - Frequencies in cycles per unit time (or space) corresponding to the scales. If the sampling period units are seconds, the frequencies are in hertz. The elements of frequencies are in decreasing order to correspond to the elements in the scales vector. Use this field to examine the CWT in the time-frequency plane.
- omega - Vector of angular frequencies used in the Fourier transform of the wavelet. This field is used in icwtft and icwtlin for the inversion of the CWT for all wavelets except the bump wavelet.
- meanSIG - Mean of the analyzed signal
- $d t$ - The sampling interval of the $1-D$ input signal
- wav - Analyzing wavelet

Examples

Compute and display the CWT of sine waves with disjoint support. The sampling interval is $1 / 1023$.

N = 1024;

```
% Sampling interval is 1/1023
t = linspace(0,1,N);
y = sin(2*pi*4*t).*(t<=0.5)+sin(2*pi*8*t).*(t>0.5);
% Because the sampling interval differs from the default
% you must input it along with the signal
% Using cell array input
sig = {y,1/1023};
cwtS1 = cwtft(sig,'plot');
```


You can display or hide the reconstructed signal using the radio button at the bottom left of the figure. When you select the radio button, the maximum and quadratic relative errors are computed and displayed along with the reconstructed signal.

Reconstruct an approximation to a sum of disjoint sine waves in noise using cwtft to decompose the signal and icwtft to reconstruct the approximation. Use the CWT coefficients to identify the scales isolating the sinusoidal components. Reconstruct an approximation to the signal based on those scales using the inverse CWT. To ensure an accurate approximation to the based on select scales, use the default power of two spacing in the CWT.

```
rng default % Reset random number generator for reproducible results
N = 1024;
```

```
% Sampling interval is 1/1023
t = linspace(0,1,N);
y = sin(2*pi*4*t).*(t<=0.5)+sin(2*pi*8*t).*(t>0.5);
ynoise = y+randn(size(t));
% Because the sampling interval differs from the default
% you must input it along with the signal
% Using structure array input
sig = struct('val',ynoise,'period',1/1023);
cwtS1 = cwtft(sig);
scales = cwtS1.scales;
MorletFourierFactor = 4*pi/(6+sqrt(2+6^2));
freq = 1./(scales.*MorletFourierFactor);
contour(t,freq,real(cwtS1.cfs));
xlabel('Seconds'); ylabel('Pseudo-frequency');
axis([0 t(end) 0 15]);
```


Extract the scales dominated by energy from the two sine waves and reconstruct a signal approximation using the inverse CWT.

```
cwtS2 = cwtS1;
cwtS2.cfs = zeros(size(cwtS1.cfs));
cwtS2.cfs(13:15,:) = cwtS1.cfs(13:15,:);
xrec = icwtft(cwtS2);
subplot(2,1,1);
plot(t,ynoise);
title('Sum of Disjoint Sinusoids in Noise');
subplot(2,1,2);
```

```
plot(t,xrec,'b'); hold on; axis([0 1 - - 4 4]);
plot(t,y,'r');
legend('Reconstructed Signal','Original Signal',...
    'Location','NorthWest');
xlabel('Seconds'); ylabel('Amplitude');
```


Alternatives

- cwt - Computes the CWT using convolutions. cwt supports a wider choice of analyzing wavelets than cwtft, but may be more computationally expensive. The output of cwt is not compatible with the inverse CWT implemented with icwtft. To use icwtft, obtain the CWT with cwtft.

More About

Morlet Wavelet

Both non-analytic and analytic Morlet wavelets are supported. The analytic Morlet wavelet, 'morl', is defined in the Fourier domain by:

$$
\breve{\Psi}(s \omega)=\pi^{-1 / 4} e^{-\left(s \omega-\omega_{0}\right)^{2} / 2} U(s \omega)
$$

where $U(\omega)$ is the Heaviside step function [5].
The non-analytic Morlet wavelet, 'morlex', is defined in the Fourier domain by:

$$
\breve{\Psi}(s \omega)=\pi^{-1 / 4} e^{-\left(s \omega-\omega_{0}\right)^{2} / 2}
$$

'morl0' defines a non-analytic Morlet wavelet in the Fourier domain with exact zero mean:

$$
\breve{\Psi}(s \omega)=\pi^{-1 / 4}\left\{e^{-\left(s \omega-\omega_{0}\right)^{2} / 2}-e^{-\omega_{0}^{2} / 2}\right\}
$$

The default value of ω_{0} is 6 .
The default smallest scale for the Morlet wavelets is $\mathbf{s} 0=2 * d t$ where $d t$ is the sampling period.

The default spacing between scales for the Morlet wavelets is $\mathrm{ds}=0.4875$.
The default number of scales for the Morlet wavelets is $\mathrm{NbSc}=$ fix(log2(length(sig)*dt/s0)/ds).

The default scales for the Morlet wavelet are s0*2.^((0:NbSc-1)*ds).

m-th Order Derivative of Gaussian Wavelets

In the Fourier domain, the m-th order derivative of Gaussian wavelets, ' dog ', are defined by:

$$
\hat{\Psi}(s \omega)=-\frac{1}{\sqrt{\Gamma(m+1 / 2)}}(j s \omega)^{m} e^{-(s \omega)^{2} / 2}
$$

where Γ () denotes the gamma function [5].
The derivative must be an even order. The default order of the derivative is 2 , which is also known as the Mexican hat wavelet .

The default smallest scale for the DOG wavelet is $s 0=2 * d t$ where $d t$ is the sampling period.

The default spacing between scales for the DOG wavelet is $\mathrm{ds}=0.4875$.

The default number of scales for the DOG wavelet is NbSc = fix(log2(length(sig)*dt/s0)/ds).

The default scales for the DOG wavelet are s0*2.^((0:NbSc-1)*ds).

Paul Wavelet

The Fourier transform of the analytic Paul wavelet, 'paul', of order m is:

$$
\hat{\Psi}(s \omega)=2^{m} \sqrt{m(2 m-1)!}(s \omega)^{m} e^{-s \omega} U(s w)
$$

where $U(\omega)$ is the Heaviside step function [5].
The default order of the Paul wavelet is 4.
The default smallest scale for the Paul wavelet is $s 0=2 * d t$ where $d t$ is the sampling period.

The default spacing between scales for the Paul wavelet is $\mathrm{ds}=0.4875$.
The default number of scales for the Paul wavelet is NbSc = fix(log2(length(sig)*dt/s0)/ds).

The default scales for the Paul wavelet are s0*2.^($0: \mathrm{NbSc}-1) * \mathrm{ds})$.

Bump wavelet

The Fourier transform of the analytic bump wavelet, 'bump ', with parameters μ and σ is

$$
\breve{\psi}(s \omega)=e^{\left(1-\frac{1}{1-(s \omega-\mu)^{2} / \sigma^{2}}\right)} 1_{[(\mu-\sigma) / s,(\mu+\sigma) / s]}
$$

where $1_{[(\mu-\sigma) / s,(\mu+\sigma) / s]}$ is the indicator function for the interval $(\mu-\sigma) / s \leq \omega \leq(\mu+\sigma) / s$.

Valid values for μ are [3,6]. Valid values for σ are [0.1, 1.2]. Smaller values of σ result in a wavelet with superior frequency localization but poorer time localization. Larger values of σ produce a wavelet with better time localization and poorer frequency localization.

The default values for μ and σ are 5 and 0.6 respectively.

The default smallest scale for the bump wavelet is $s 0=2 * d t$ where $d t$ is the sampling period.

The default spacing between scales for the bump wavelet is $\mathrm{ds}=1 / 10$.
The default number of scales for the bump wavelet is $\mathrm{NbSc}=$ fix(log2(length(sig)*dt/s0)/ds).

The default scales for the bump wavelet are s0*2.^((0:NbSc-1)*ds).

Algorithms

cwtft implements the following algorithm:

- Obtain the discrete Fourier transform (DFT) of the signal using fft.
- Obtain the DFT of the analyzing wavelet at the appropriate angular frequencies. Scale the DFT of the analyzing wavelet at different scales to ensure different scales are directly comparable.
- Take the product of the signal DFT and the wavelet DFT over all the scales. Invert the DFT to obtain the CWT coefficients.

For a mathematical motivation for the FFT-based algorithm see "Continuous Wavelet Transform and Scale-Based Analysis".

- "Continuous and Discrete Wavelet Transforms"
- "Continuous Wavelet Transform and Scale-Based Analysis"
- "Inverse Continuous Wavelet Transform"
- "Time-Frequency Analysis with the Continuous Wavelet Transform"

References

[1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
[2] Farge, M. "Wavelet Transforms and Their Application to Turbulence", Ann. Rev. Fluid. Mech., 1992, 24, 395-457.
[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
[4] Sun,W. "Convergence of Morlet's Reconstruction Formula", preprint, 2010.

[5] Torrence, C. and G.P. Compo. "A Practical Guide to Wavelet Analysis", Bull. Am. Meteorol. Soc., 79, 61-78, 1998.

See Also
cwt | icwtft | icwtlin
Introduced in R201 la

cwiftinfo

Valid analyzing wavelets for FFT-based CWT

Compatibility

This function is no longer recommended. Use cwt instead.

Syntax

cwtftinfo

Description

cwtftinfo displays expressions for the Fourier transforms of valid analyzing wavelets for use with cwtft.

Examples

Display a list of Fourier transforms for all valid analyzing wavelets.
cwtftinfo

More About

Morlet Wavelet

Both non-analytic and analytic Morlet wavelets are supported. The analytic Morlet wavelet, 'morl', is defined in the Fourier domain by:

$$
\breve{\Psi}(s \omega)=\pi^{-1 / 4} e^{-\left(s \omega-\omega_{0}\right)^{2} / 2} U(s \omega)
$$

where $U(\omega)$ is the Heaviside step function.

The non-analytic Morlet wavelet, 'morlex', is defined in the Fourier domain by:

$$
\breve{\Psi}(s \omega)=\pi^{-1 / 4} e^{-\left(s \omega-\omega_{0}\right)^{2} / 2}
$$

'morl0' defines a non-analytic Morlet wavelet in the Fourier domain with exact zero mean:

$$
\breve{\Psi}(s \omega)=\pi^{-1 / 4}\left\{e^{-\left(s \omega-\omega_{0}\right)^{2} / 2}-e^{-\omega_{0}^{2} / 2}\right\}
$$

The default value of ω_{0} is 6 .

\boldsymbol{m}-th Order Derivative of Gaussian Wavelets

In the Fourier domain, the m-th order derivative of Gaussian wavelets, ' dog ' , is defined by:

$$
\hat{\Psi}(s \omega)=-\frac{1}{\sqrt{\Gamma(m+1 / 2)}}(j s \omega)^{m} e^{-(s \omega)^{2} / 2}
$$

The derivative must be an even order. The default order of the derivative is 2 , which is also known as the Mexican hat or Ricker wavelet.

Because the unit imaginary, j, is always raised to an even power, the Fourier transform is real-valued.

Paul Wavelet

The Fourier transform of the Paul wavelet, 'paul', of order m is:

$$
\hat{\Psi}(s \omega)=2^{m} \sqrt{m(2 m-1)!}(s \omega)^{m} e^{-s \omega} U(s w)
$$

where $U(\omega)$ is the Heaviside step function. The Paul wavelet is analytic.
The default order of the Paul wavelet is 4 .

Bump wavelet

The Fourier transform of the analytic bump wavelet, ' bump ', with parameters μ and σ is

$$
\breve{\psi}(s \omega)=e^{\left(1-\frac{1}{1-(s \omega-\mu)^{2} / \sigma^{2}}\right)} 1_{[(\mu-\sigma) / s,(\mu+\sigma) / s]}
$$

where ${ }^{1}[(\mu-\sigma) / s,(\mu+\sigma) / s]$ is the indicator function for the interval $(\mu-\sigma) / s \leq \omega \leq(\mu+\sigma) / s$.
Valid values for μ are [3,6]. Valid values for σ are [0.1, 1.2]. Smaller values of σ result in a wavelet with superior frequency localization but poorer time localization. Larger values of σ produce a wavelet with better time localization and poorer frequency localization.

The default values for μ and σ are 5 and 0.6 respectively.

- "Continuous and Discrete Wavelet Transforms"
- "Continuous Wavelet Transform and Scale-Based Analysis"
- "Inverse Continuous Wavelet Transform"

References

[1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
[2] Farge, M. Wavelet Transforms and Their Application to Turbulence, Ann. Rev. Fluid. Mech., 1992, 24, 395-457.
[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
[4] Torrence, C. and G.P. Compo A Practical Guide to Wavelet Analysis, Bull. Am. Meteorol. Soc., 79, 61-78, 1998.

See Also

cwtft | icwtft | icwtlin

Introduced in R201 la

cwiftinfo2

Supported 2-D CWT wavelets and Fourier transforms

Syntax

cwtftinfo2
cwtftinfo2(wname)

Description

cwtftinfo2 lists the supported 2-D continuous wavelet transform (CWT) wavelets and corresponding parameters for use with cwtft2.
cwtftinfo2 (wname) displays the equation for the 2-D Fourier transform of the wavelet, wname. The figure with the 2-D Fourier transform of the analyzing wavelet has a dropdown list from which you can select other wavelets.

Examples

Available Wavelets with Parameters

cwtftinfo2

```
CWTFTINFO2 Information on wavelets for CWTFT2
    CWTFTINFO2 provides information on the available wavelets
    for 2-D Continuous Wavelet Transform using FFT.
    The wavelets are defined by their Fourier transform.
    The formulae giving the Fourier transform of
    the wavelet which short name (see below) is SNAME
    will be displayed using CWTFTINFO2(SNAME).
    The table below gives the short name of each wavelet
    and the associated parameters: first, the name of parameter
    and then the default value.
    WAV_Param_Table = {...
            'morl' }\mp@subsup{}{}{-
```

```
    defaults: omega0 = 6; sigma = 1; epsilon = 1;
'mexh
    defaults: \(p=2 ;\) sigmax \(=1 ;\) sigmay \(=1\);
'paul' ,
    defaults: \(p=4 ;\)
'dog' ,
    defaults: alpha = 2;
'cauchy'
    defaults: alpha = pi/6; sigma \(=1 ; L=4 ; M=4 ;\)
escauchy'
    defaults: alpha \(=\) pi/6; sigma \(=1 ; L=4 ; M=4 ;\)
'gaus'
    defaults: \(p=1 ;\) sigmax \(=1 ;\) sigmay \(=1\);
'wheel'
    defaults: sigma \(=2\);
'fan'
    defaults: omega0 = 5.336; sigma = 1; epsilon = 1; J = 6.5;
'pethat'
    defaults: No parameters.
'dogpow'
    defaults: alpha \(=1.25 ; p=2 ;\)
'esmorl'
    defaults: omega0 \(=6 ;\) sigma \(=1 ;\) epsilon \(=1\);
'esmexh'
    defaults: \(\quad\) sigma \(=1 ;\) epsilon \(=0.5 ;\)
'gaus2'
    defaults: \(p=1 ;\) sigmax \(=1 ;\) sigmay \(=1 ;\)
'gaus3'
    defaults: \(A=1 ; B=1 ; \quad \mathrm{A}=1 ;\) sigmax \(=1 ;\) sigmay \(=1\);
'isodog'
    defaults: alpha = 1.25;
'dog2'
    defaults = alpha = 1.25;
    'isomorl'
    defaults: omega0 = 6; sigma = 1;
'rmorl'
    defaults: omega0 = 6; sigma = 1; epsilon = 1;
'endstop1' ,
    defaults: omega0 \(=6\);
'endstop2' ,
    defaults: omega0 \(=6 ;\) sigma \(=1\);
    'gabmexh' ,
    defaults: omega0 = 5.336; epsilon = 1;
    'sinc' ,
```

```
    defaults: Ax = 1; Ay = 1; p = 1; omegaOX= 0; OmegaOY = 0;
    };
The various wavelets may be grouped in families as follow:
    MORLET: 'morl' , 'esmorl' , 'rmorl' , 'isomorl'
    DOG: 'dog' , 'isodog', 'dog2', 'dogpow'
    GAUSS: 'mexh' , 'gaus' , 'gaus2' , 'gaus3' , 'esmexh'
    PAUL: 'paul'
    CAUCHY: 'cauchy', 'escauchy'
    WHEEL: 'wheel', 'pethat'
    MISCELLANEOUS : 'endstop1', 'endstop2', 'gabmexh', 'sinc' , 'fan'
    REFERENCES
        Two-Dimensional Wavelets and their Relatives
        J.-P. Antoine, R. Murenzi, P. Vandergheynst andS. Twareque Ali
        Cambridge University Press - 2004
        Two-dimensional wavelet transform profilometry
        Fringe Pattern Analysis Using Wavelet
        Liverpool John Moores University
        http://www.ljmu.ac.uk
    See also CWTFT2
```


Display the Expression for the 2-D Fourier Transform

Display the expression for the 2-D Fourier transform of the Cauchy wavelet. After displaying the Fourier transform for any wavelet, you can use the drop-down list in the bottom left to view the Fourier transform for any supported wavelet.

```
cwtftinfo2('cauchy')
```


cauchy

$$
\begin{aligned}
& \hat{\psi}\left(\omega_{x}, \omega_{y}\right)=\left[\sin (\alpha) \omega_{x}+\cos (\alpha) \omega_{y}\right]^{L} \cdots \\
& {\left[-\sin (\alpha) \omega_{x}+\cos (\alpha) \omega_{y}\right]^{M 1}\left[\operatorname{lan}(\alpha) \omega_{x}>\left|\omega_{y}\right|\right] e^{-\sigma \frac{\left[\omega_{x}\right)^{2}+\left.\left(\omega_{y}\right)^{2}\right|^{2}}{2}}} \\
& \quad \sigma \in] 0,+\infty[, \alpha \in] 0, \frac{\pi}{2}\left[, L_{,}, M\right] 0,+\infty[
\end{aligned}
$$

Input Arguments

wname - Wavelet name

character vector
Wavelet name, specified as a . The following table lists the supported wavelets for the 2D CWT and associated parameters:

Wavelet name	Parameters
'morl'	\{'Omega0', 6;'Sigma', 1;'Epsilon',1\}
'mexh'	\{'p',2;'sigmax', 1; 'sigmay', 1\}
'paul'	\{'p', 4\}
'dog '	\{'alpha', 1.25\}
'cauchy '	\{'alpha', 'pi/6';'sigma',1;'L', 4;'M', 4\}
'escauchy'	\{'alpha', 'pi/6';'sigma',1;'L',4;'M', 4\}
'gaus'	\{'p',1;'sigmax', 1;'sigmay', 1\}
'wheel'	\{'sigma', 2\}
'fan'	\{'Omega0X',5.336;'Sigma',1;'Epsilon', 1; 'ل',
'pethat'	None
'dogpow '	\{'alpha', 1.25;'p', 2\}
'esmorl'	\{'Omega0',6;'Sigma',1;'Epsilon',1\}
'esmexh '	\{'Sigma',1;'Epsilon', 0.5\}
'gaus2'	\{'p',1;'sigmax',1;'sigmay ', 1\}
'gaus3'	\{'A', 1;'B', 1;'p',1;'sigmax',1;'sigmay', 1\}
'isodog'	\{'alpha', 1.25\}
'dog2'	\{'alpha', 1.25\}
'isomorl'	\{'Omega0', 6; 'Sigma', 1\}
'rmorl'	\{'Omega0', 6;'Sigma',1;'Epsilon',1\}
'endstop1'	\{'Omega0', 6\}
'endstop2'	\{'OmegaO', 6; 'Sigma', 1\}
'gabmexh'	\{'Omega0', 5.336;'Epsilon', 1\}
'sinc'	\{'Ax',1;'Ay',1;'p',1;'Omega0X',0;'OmegaOY',

Example: cwtftinfo2('paul')

Data Types: char

Introduced in R2013b

cwift2

2-D continuous wavelet transform

Syntax

```
cwtstruct = cwtft2(x)
cwtstruct = cwtft2(x,'plot')
cwtstruct = cwtft2(x,Name,Value)
```


Description

cwtstruct $=$ cwtft2 (x) returns the 2-D continuous wavelet transform (CWT) of the 2-D matrix, x. cwtft2 uses a Fourier transform-based algorithm in which the 2-D Fourier transforms of the input data and analyzing wavelet are multiplied together and inverted.
cwtstruct $=$ cwtft2(x,'plot') plots the data and the 2-D CWT.
cwtstruct $=$ cwtft2(x, Name, Value) uses additional options specified by one or more Name,Value pair arguments.

Examples

Compare Isotropic and Anisotropic Wavelets

Shows how an isotropic wavelet does not discern the orientation of features while an anisotropic wavelet does. The example uses the Mexican hat isotropic wavelet and the directional (anisotropic) Cauchy wavelet.

Load and view the hexagon image.

```
Im = imread('hexagon.jpg');
imagesc(Im); colormap(jet);
```


Obtain the scale-one 2-D CWT with both the Mexican hat and Cauchy wavelets. Specify a vector of angles going from 0 to $15 \Pi / 8$ in $\Pi / 8$ increments.

```
cwtcauchy = cwtft2(Im,'wavelet','cauchy','scales',1,...
    'angles',0:pi/8:2*pi-pi/8);
cwtmexh = cwtft2(Im,'wavelet','mexh','scales',1,...
    'angles',0:pi/8:2*pi-pi/8);
```

Visualize the scale-one 2-D CWT coefficient magnitudes at each angle.

```
angz = {'0', 'pi/8', 'pi/4', '3pi/8', 'pi/2', '5pi/8', '3pi/4', ...
    '7pi/8','pi', '9pi/8', '5pi/4', '11pi/8', '3pi/2', ...
    '13pi/8' '7pi/4', '15pi/8'};
for angn = 1:length(angz)
```

```
        subplot(211)
        imagesc(abs(cwtmexh.cfs(:,:,1,1,angn)));
        title(['Mexican hat at ' angz(angn) 'radians']);
        subplot(212)
        imagesc(abs(cwtcauchy.cfs(:,:,1,1,angn)));
        title(['Cauchy wavelet at ' angz(angn) 'radians']);
        pause(1);
    end
```


Cauchy wavelet at
15pi/8
radians

Plot 2-D CWT

Load an image of a woman, obtain the 2-D CWT using the Morlet wavelet, and plot the CWT coefficients.
load woman;

```
cwtmorl = cwtft2(X,'scales',1:4,'angles',0:pi/2:3*pi/2,'plot');
```


Scale: Index 1 - Value 1.000 -- Angle: Index 1 - Value 0 pi [rad] = 0.00 [dgr]


```
Im = imread('star.jpg');
cwtout = cwtft2(Im);
```

- "Two-Dimensional CWT of Noisy Pattern"
- "2-D Continuous Wavelet Transform App"

Input Arguments

x - Input data
array
Input data, specified as a 2-D matrix or 3-D array. If the input data is a 3-D array, the input matrix is a truecolor image.
Example: X = imread('stars.jpg');
Data Types: double | uint8

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.
Example: 'wavelet', 'paul', 'scales', 2^(0:5) specifies to use the Paul wavelet and a vector of scales.

'angles' - Angles

0 (default) | scalar | vector
Angles in radians, specified as a comma-separated pair consisting of 'angles ' and either a scalar or a vector.

Example: 'angles',[0 pi/2 pi]

```
'norm' - Normalization
'L2' (default) | 'L1' | 'LO'
```

Normalization used in the 2-D CWT, specified as a comma-separated pair consisting of ' norm' and one of these character vectors:

- 'L2' - The Fourier transform of the analyzing wavelet at a given scale is multiplied by the corresponding scale. 'L2' is the default normalization.
- 'L1' - The Fourier transform of the analyzing wavelet is multiplied by 1 at all scales.
- 'LO' - The Fourier transform of the analyzing wavelet at a given scale is multiplied by the square of the corresponding scale.

```
Example:'norm','L1'
'scales' - Scales
2^(0:5) (default) | scalar | vector
```

Scales, specified as a comma-separated pair consisting of 'scales' and either a positive real-valued scalar or a vector of positive real numbers.

Example: 'scales', 2^(1:6)

'wavelet' - Analyzing wavelet
 'morl' (default) | character vector | structure | cell array

Analyzing wavelet, specified as a comma-separated pair consisting of 'wavelet' and a character vector, a structure, or a cell array. cwtftinfo 2 provides a comprehensive list of supported wavelets and associated parameters.

If you specify 'wavelet' as a structure, the structure must contain two fields:

- name - the character vector corresponding to a supported wavelet.
- param - a cell array with the parameters of the wavelet.

If you specify 'wavelet' as a cell array, wav, the cell array must contain two elements:

- wav\{1\} - the character vector corresponding to a supported wavelet.
- wav $\{2\}$ - a cell array with the parameters of the wavelet.

Example: 'wavelet', \{'morl', $\{6,1,1\}\}$
Example: 'wavelet', struct('name', 'paul', 'param', \{'p', 2\})

Output Arguments

cwtstruct - 2-D CWT

structure

The 2-D CWT, returned as a structure with the following fields:

wav - Analyzing wavelet and parameters

structure

Analyzing wavelet and parameters, returned as a structure with the following fields:

- wname - name
- param - parameters
wav_norm - Normalization constants
matrix
Normalization constants, returned as a M-by- N matrix where M is the number of scales and N is the number of angles.

cfs - CWT coefficients

array

CWT coefficients, returned as an N-D array. The row and column dimensions of the array equal the row and column dimensions of the input data. The third page of the array is equal to 1 or 3 depending on whether the input data is a grayscale or truecolor image. The fourth page of the array is equal to the number of scales and the fifth page of the array is equal to the number of angles.

scales - Scales

vector
Scales for the 2-D CWT, returned as a row vector.

angles - Angles

vector
Angles for the 2-D CWT, returned as a row vector.

```
meanSIG - Mean
```

scalar
Mean of the input data, returned as a scalar

See Also
cwtftinfo2

Introduced in R2013b

dbaux

Daubechies wavelet filter computation

Syntax

```
W = dbaux(N,SUMW)
W = dbaux(N)
W = dbaux (N,O)
```


Description

$W=\operatorname{dbaux}(N$, SUMW $)$ is the order N Daubechies scaling filter such that sum $(W)=$ SUMW. Possible values for N are $1,2,3, \ldots$

Note Instability may occur when N is too large.
$W=\operatorname{dbaux}(N)$ is equivalent to $W=\operatorname{dbaux}(N, 1)$
$W=\operatorname{dbaux}(N, 0)$ is equivalent to $W=\operatorname{dbaux}(N, 1)$

Examples

Daubechies' Extremal Phase Scaling Filter with Specified Sum

This example shows to determine the Daubechies' extremal phase scaling filter with a specified sum. The two most common values for the sum are $\sqrt{2}$ and 1 .

Construct two versions of the 'db4' scaling filter. One scaling filter sums to $\sqrt{2}$ and the other version sums to 1 .

NumVanishingMoments = 4;
h = dbaux(NumVanishingMoments,sqrt(2));
m0 = dbaux(NumVanishingMoments,1);

The filter with sum equal to $\sqrt{2}$ is the synthesis (reconstruction) filter returned by wfilters and used in the discrete wavelet transform.

```
[LoD,HiD,LoR,HiR] = wfilters('db4');
```

$\max (a b s($ LoR-h $)$)

ans =

4.2589e-13

For orthogonal wavelets, the analysis (decomposition) filter is the time-reverse of the synthesis filter.

```
max(abs(LoD-fliplr(h)))
```

ans =
4.2589e-13

Limitations

The computation of the dbN Daubechies scaling filter requires the extraction of the roots of a polynomial of order 4 N . Instability may occur when N is too large.

More About

Algorithms

The algorithm used is based on a result obtained by Shensa (see "References"), showing a correspondence between the "Lagrange à trous" filters and the convolutional squares of the Daubechies wavelet filters.

The computation of the order N Daubechies scaling filter w proceeds in two steps: compute a "Lagrange à trous" filter P, and extract a square root. More precisely:

- P the associated "Lagrange à trous" filter is a symmetric filter of length $4 \mathrm{~N}-1 . \mathrm{P}$ is defined by

$$
P=[\alpha(N) 0 a(N-1) 0 \ldots 0 a(1) 1 a(1) 0 a(2) 0 \ldots 0 a(N)]
$$

- where

$$
a(k)=\frac{\prod_{\substack{i \neq k}}^{N}\left(\frac{1}{2}-i\right)}{\prod_{\substack{i \\ i=-N+1 \\ i \neq k}}^{N}(k-i)} \text { for } k=1, \ldots, N
$$

- Then, if w denotes $\mathrm{db} N$ Daubechies scaling filter of sum $\sqrt{2}, w$ is a square root of P :
$P=\operatorname{conv}(\operatorname{wrev}(w), w)$ where w is a filter of length $2 N$.
The corresponding polynomial has N zeros located at -1 and $N-1$ zeros less than 1 in modulus.

Note that other methods can be used; see various solutions of the spectral factorization problem in Strang-Nguyen (p. 157).

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed.

Shensa, M.J. (1992), "The discrete wavelet transform: wedding the a trous and Mallat Algorithms," IEEE Trans. on Signal Processing, vol. 40, 10, pp. 2464-2482.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

See Also

dbwavf | wfilters

Introduced before R2006a

dbwavf

Daubechies wavelet filter

Syntax

F = dbwavf(W)

Description

$F=\operatorname{dbwavf}(W)$ returns the scaling filter associated with Daubechies wavelet specified by the character vector W where $W=$ 'dbN'. Possible values for N are $1,2,3, \ldots, 45$.

Examples

```
% Set Daubechies wavelet name.
wname = 'db4';
% Compute the corresponding scaling filter.
f = dbwavf(wname)
f =
Columns 1 through 7
0.1629 0.5055 0.4461 -0.0198 -0.1323 0.0218 0.0233
Column 8
-0.0075
```


See Also

dbaux | waveinfo | wfilters

Introduced before R2006a

ddencmp

Default values for denoising or compression

Syntax

[THR, SORH, KEEPAPP, CRIT] = ddencmp(IN1, IN2, X)
[THR,SORH, KEEPAPP] = ddencmp(IN1, 'wv',X)
[THR, SORH, KEEPAPP, CRIT] = ddencmp(IN1,'wp',X)

Description

ddencmp returns default values for denoising or compression for the critically-sampled discrete wavelet or wavelet packet transform.

You can use ddencmp for 1-D signals or 2-D images.
[THR, SORH, KEEPAPP, CRIT] = ddencmp(IN1, IN2, X) returns default values for denoising or compression, using wavelets or wavelet packets, of an input vector or matrix X, which can be a one- or two-dimensional signal. THR is the threshold, SORH is for soft or hard thresholding, KEEPAPP allows you to keep approximation coefficients, and CRIT (used only for wavelet packets) is the entropy name (see wentropy for more information).

IN1 is 'den' for denoising or 'cmp ' for compression.
IN2 is 'wv ' for wavelet or 'wp ' for wavelet packet.
For wavelets (three output arguments):
[THR, SORH, KEEPAPP] = ddencmp(IN1, 'wv',X) returns default values for denoising (if IN1 $=$ 'den') or compression (if IN1 $=' \mathrm{cmp}$ ') of X. These values can be used for wdencmp.

For wavelet packets (four output arguments):
[THR, SORH, KEEPAPP, CRIT] = ddencmp(IN1, 'wp ' , X) returns default values for denoising (if IN1 = 'den') or compression (if IN1 = 'cmp') of X. These values can be used for wdencmp.

Examples

Default Global Threshold for Wavelet Denoising

Determine the default global denoising threshold for an $\mathrm{N}(0,1)$ white noise input. Create an $\mathrm{N}(0,1)$ white noise input. Set the random number generator to the default initial settings for reproducible results.

```
dwtmode('per');
rng default;
x = randn(512,1);
```

!!
! WARNING: Change DWT Extension Mode !
!!!

** DWT Extension Mode: Periodization **

Use ddencmp to obtain the default global threshold for wavelet denoising. Demonstrate that the threshold is equal to the universal threshold of Donoho and Johnstone scaled by a robust estimate of the variance.

```
[thr,sorh,keepapp] = ddencmp('den','wv',x);
[A,D] = dwt(x,'db1');
noiselev = median(abs(D))/0.6745;
thresh = sqrt(2*log(length(x)))*noiselev;
```

Compare the value of the variable thr to the value of thresh.

Default Global Threshold for Wavelet Packet Compression

Determine the default global compression threshold for an $\mathrm{N}(0,1)$ white noise input.
Create an $\mathrm{N}(0,1)$ white noise input. Set the random number generator to the default initial settings for reproducible results.

```
dwtmode('per');
rng default;
x = randn(512,1);
```

```
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! WARNING: Change DWT Extension Mode !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*)
** DWT Extension Mode: Periodization **
*****************************************
```

Use ddencmp with the 'cmp' and 'wp ' input arguments to return the default global compression threshold for a wavelet packet transform.

```
[thr,sorh,keepapp,crit] = ddencmp('den','wp',x);
```


References

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE, Trans. on Inf. Theory, 41, 3, pp. 613-627.

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone (1994), "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, Ser. I, t. 319, pp. 1317-1322.

See Also
wdencmp | wenergy | wpdencmp

Introduced before R2006a

dddtree

Dual-tree and double-density 1-D wavelet transform

Syntax

```
wt = dddtree(typetree,x,level,fdf,df)
wt = dddtree(typetree,x,level,fname)
wt = dddtree(typetree,x,level,fname1,fname2)
```


Description

$w t=$ dddtree(typetree, $x, l e v e l, f d f, d f)$ returns the typetree discrete wavelet transform (DWT) of the 1-D input signal, x, down to level, level. The wavelet transform uses the decomposition (analysis) filters, fdf, for the first level and the analysis filters, df, for subsequent levels. Supported wavelet transforms are the critically sampled DWT, double-density, dual-tree complex, and dual-tree double-density complex wavelet transform. The critically sampled DWT is a filter bank decomposition in an orthogonal or biorthogonal basis (nonredundant). The other wavelet transforms are oversampled filter banks.
$w t=$ dddtree(typetree, x, level, fname) uses the filters specified by fname to obtain the wavelet transform. Valid filter specifications depend on the type of wavelet transform. See dtfilters for details.
$w t=$ dddtree(typetree, x, level, fname1, fname2) uses the filters specified in fname1 for the first stage of the dual-tree wavelet transform and the filters specified in fname2 for subsequent stages of the dual-tree wavelet transform. Specifying different filters for stage 1 is valid and necessary only when typetree is 'cplxdt ' or 'cplxdddt'.

Examples

Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of the noisy Doppler signal. The FIR filters in the first and subsequent stages result in an approximately analytic wavelet as required.

Create the first-stage analysis filters for the two trees.

Faf $\{1\}=[0$	0
-0.0884	-0.0112
0.0884	0.0112
0.6959	0.0884
0.6959	0.0884
0.0884	-0.6959
-0.0884	0.6959
0.0112	-0.0884
0.0112	-0.0884
0	$0] ;$
Faf\{2\} $=[$	0.01120
0.0112	0
-0.0884	-0.0884
0.0884	-0.0884
0.6959	0.6959
0.6959	-0.6959
0.0884	0.0884
-0.0884	0.0884
0	0.0112
0	$-0.0112] ;$

Create the analysis filters for subsequent stages of the multiresolution analysis.

```
af{1} = [ 0.0352 0
    0 0
    -0.0883 -0.1143
    0.2339 0
    0.7603 0.5875
    0.5875 -0.7603
        0.2339
        -0.1143 0.0883
            0 0
            0 -0.0352];
```

```
\(\operatorname{af}\{2\}=\left[\begin{array}{ll}0 & -0.0352\end{array}\right.\)
    \(-0.1143 \quad 0.0883\)
        \(0 \quad 0.2339\)
    \(0.5875-0.7603\)
    \(0.7603 \quad 0.5875\)
    \(0.2339 \quad 0\)
    \(-0.0883-0.1143\)
    0.03520 ;
```

Load the noisy Doppler signal and obtain the complex dual-tree wavelet transform down to level 4.
load noisdopp;
wt = dddtree('cplxdt', noisdopp,4, Faf,af);
Plot an approximation based on the level-four approximation coefficients.

```
xapp = dddtreecfs('r',wt,'scale',{5});
plot(noisdopp); hold on;
plot(cell2mat(xapp),'r','linewidth',3);
axis tight;
```


Double-Density Wavelet Transform

Obtain the double-density wavelet transform of a signal with two discontinuities. Use the level-one detail coefficients to localize the discontinuities.

Create a signal consisting of a $2-\mathrm{Hz}$ sine wave with a duration of 1 second. The sine wave has discontinuities at 0.3 and 0.72 seconds.

```
N = 1024;
t = linspace(0,1,1024);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
plot(t,x); xlabel('t'); ylabel('x');
title('Original Signal');
```

Original Signal

Obtain the double-density wavelet transform of the signal, reconstruct an approximation based on the level-one detail coefficients, and plot the result.

```
wt = dddtree('ddt',x,1,'filters1');
wt.cfs{2} = zeros(1,512);
xrec = idddtree(wt);
plot(t,xrec,'linewidth',2)
set(gca,'xtick',[0 0.3 0.72 1]); set(gca,'xgrid','on');
```


First-Level Detail Coefficients Approximation - Complex Dual-Tree

Obtain the complex dual-tree wavelet transform of a signal with two discontinuities. Use the first-level detail coefficients to localize the discontinuities.

Create a signal consisting of a $2-\mathrm{Hz}$ sine wave with a duration of 1 second. The sine wave has discontinuities at 0.3 and 0.72 seconds.

N = 1024;
t = linspace (0,1,1024);
$x=4 * \sin (4 * p i * t)$;
$\mathrm{x}=\mathrm{x}-\mathrm{sign}(\mathrm{t}-\mathrm{}.) \mathrm{-} \operatorname{sign}(.72-\mathrm{t})$;
plot(t,x); xlabel('t'); ylabel('x');
title('Original Signal');

Original Signal

Obtain the dual-tree wavelet transform of the signal, reconstruct an approximation based on the level-one detail coefficients, and plot the result.

```
wt = dddtree('cplxdt',x,1,'FSfarras','qshift06');
wt.cfs{2} = zeros(1,512,2);
xrec = idddtree(wt);
plot(t,xrec,'linewidth',2)
set(gca,'xtick',[0 0.3 0.72 1]); set(gca,'xgrid','on');
```


- "Analytic Wavelets Using the Dual-Tree Wavelet Transform"

Input Arguments

typetree - Type of wavelet decomposition

'dwt' | 'ddt'| 'cplxdt' | 'cplxdddt'
Type of wavelet decomposition, specified as one of 'dwt ', 'ddt', 'cplxdt', or 'cplxdddt'. The type, 'dwt ', gives a critically sampled (nonredundant) discrete wavelet transform. The other decomposition types produce oversampled wavelet transforms. 'ddt' produces a double-density wavelet transform. 'cplxdt' produces a
dual-tree complex wavelet transform. ' cplxdddt ' produces a double-density dual-tree complex wavelet transform.

x - Input signal

vector
Input signal, specified as an even-length row or column vector. If L is the value of the level of the wavelet decomposition, 2^{L} must divide the length of x. Additionally, the length of the signal must be greater than or equal to the product of the maximum length of the decomposition (analysis) filters and $2^{(L-1)}$.
Data Types: double

level - Level of wavelet decomposition

positive integer
Level of the wavelet decomposition, specified as an integer. If L is the value of level, 2^{L} must divide the length of x. Additionally, the length of the signal must be greater than or equal to the product of the maximum length of the decomposition (analysis) filters and $2^{(L-1) \text {. }}$

Data Types: double

fdf - Level-one analysis filters

matrix | cell array
The level-one analysis filters, specified as a matrix or cell array of matrices. Specify fdf as a matrix when typetree is 'dwt' or 'ddt'. The size and structure of the matrix depend on the typetree input as follows:

- 'dwt ' - This is the critically sampled discrete wavelet transform. In this case, fdf is a two-column matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter in the second column.
- 'ddt ' - This is the double-density wavelet transform. The double-density DWT is a three-channel perfect reconstruction filter bank. fdf is a three-column matrix with the lowpass (scaling) filter in the first column and the two highpass (wavelet) filters in the second and third columns. In the double-density wavelet transform, the single lowpass and two highpass filters constitute a three-channel perfect reconstruction filter bank. This is equivalent to the three filters forming a tight frame. You cannot arbitrarily choose the two wavelet filters in the double-density DWT. The three filters together must form a tight frame.

Specify fdf as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'cplxdt' or 'cplxdddt'. The size and structure of the matrix elements depend on the typetree input as follows:

- For the dual-tree complex wavelet transform, 'cplxdt', fdf\{1\} is a two-column matrix containing the lowpass (scaling) filter and highpass (wavelet) filters for the first tree. The scaling filter is the first column and the wavelet filter is the second column. fdf $\{2\}$ is a two-column matrix containing the lowpass (scaling) and highpass (wavelet) filters for the second tree. The scaling filter is the first column and the wavelet filter is the second column.
- For the double-density dual-tree complex wavelet transform, ' cplxdddt', fdf\{1\} is a three-column matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the first tree and $f d f\{2\}$ is a three-column matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the second tree.

Data Types: double

df - Analysis filters for levels > 1

matrix | cell array
Analysis filters for levels >1, specified as a matrix or cell array of matrices. Specify df as a matrix when typetree is 'dwt' or 'ddt'. The size and structure of the matrix depend on the typetree input as follows:

- 'dwt ' - This is the critically sampled discrete wavelet transform. In this case, df is a two-column matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter in the second column. For the critically sampled orthogonal or biorthogonal DWT, the filters in df and fdf must be identical.
- 'ddt ' - This is the double-density wavelet transform. The double-density DWT is a three-channel perfect reconstruction filter bank. df is a three-column matrix with the lowpass (scaling) filter in the first column and the two highpass (wavelet) filters in the second and third columns. In the double-density wavelet transform, the single lowpass and two highpass filters must constitute a three-channel perfect reconstruction filter bank. This is equivalent to the three filters forming a tight frame. For the double-density DWT, the filters in df and fdf must be identical.

Specify df as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'cplxdt' or 'cplxdddt'. For dual-tree transforms, the filters in fdf and df must be different. The size and structure of the matrix elements in the cell array depend on the typetree input as follows:

- For the dual-tree complex wavelet transform, 'cplxdt', df\{1\} is a two-column matrix containing the lowpass (scaling) and highpass (wavelet) filters for the first tree. The scaling filter is the first column and the wavelet filter is the second column. $\mathrm{df}\{2\}$ is a two-column matrix containing the lowpass (scaling) and highpass (wavelet) filters for the second tree. The scaling filter is the first column and the wavelet filter is the second column.
- For the double-density dual-tree complex wavelet transform, ' cplxdddt ', df \{1\} is a three-column matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the first tree and $d f\{2\}$ is a three-column matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the second tree.

Data Types: double

fname - Filter name

character vector
Filter name, specified as a character vector. For the critically sampled DWT, specify any valid orthogonal or biorthogonal wavelet filter. See wfilters for details. For the doubledensity wavelet transform, 'ddt', valid choices are 'filters1' and 'filters2'. For the complex dual-tree wavelet transform, valid choices are ' $d t f P$ ' with $P=1,2,3,4$. For the double-density dual-tree wavelet transform, the only valid choice is 'dddtf1'. See dtfilters for more details on valid filter names for the oversampled wavelet filter banks.

Data Types: char

fname1 - First-stage filter name

character vector
First-stage filter name, specified as a character vector. Specifying a different filter for the first stage is valid and necessary only in the dual-tree transforms, ' cplxdt ' and ' cplxddt'. In the complex dual-tree wavelet transform, you can use any valid wavelet filter for the first stage. In the double-density dual-tree wavelet transform, the first-stage filters must form a three-channel perfect reconstruction filter bank.

Data Types: char

fname2 - Filter name for stages > 1

character vector
Filter name for stages >1, specified as a character vector. You must specify a first-level filter that is different from the wavelet and scaling filters in subsequent levels when
using the dual-tree wavelet transforms, 'cplxdt' or 'cplxdddt'. See dtfilters for valid choices.

Data Types: char

Output Arguments

wt - Wavelet transform

structure

Wavelet transform, returned as a structure with these fields:

type - Type of wavelet decomposition (filter bank) 'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition (filter bank) used in the analysis, returned as one of 'dwt', 'ddt', 'cplxdt', or 'cplxdddt'. The type, 'dwt', gives a critically sampled discrete wavelet transform. The other types correspond to oversampled wavelet transforms. 'ddt ' is a double-density wavelet transform, 'cplxdt' is a dual-tree complex wavelet transform, and 'cplxdddt' is a double-density dual-tree complex wavelet transform.

level - Level of the wavelet decomposition
 positive integer

Level of wavelet decomposition, returned as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis) filters

structure
Decomposition (analysis) and reconstruction (synthesis) filters, returned as a structure with these fields:

Fdf - First-stage analysis filters

matrix | cell array
First-stage analysis filters, returned as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the
matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1
 matrix | cell array

Analysis filters for levels >1, returned as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters

matrix | cell array

First-level reconstruction filters, returned as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N -by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > $\mathbf{1}$

matrix | cell array
Reconstruction filters for levels >1, returned as an N -by- 2 or N -by- 3 matrix for singletree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the synthesis filters for the corresponding tree.
cfs - Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, returned as a 1-by-(level+1) cell array of matrices. The size and structure of the matrix elements of the cell array depend on the type of wavelet transform, typetree, as follows:

- 'dwt' - cfs\{j\}
- $\mathrm{j}=1,2, \ldots$ level is the level.
- cfs $\{l e v e l+1\}$ are the lowpass, or scaling, coefficients.
- 'ddt'-cfs\{j\}(:,:,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{k}=1,2$ is the wavelet filter.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdt'—cfs\{j\}(:,:,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdddt'-cfs\{j\}(:,:,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{k}=1,2$ is the wavelet filter.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- $\operatorname{cfs}\{l e v e l+1\}(:,:)$ are the lowpass, or scaling, coefficients.

More About

- "Critically Sampled and Oversampled Wavelet Filter Banks"

See Also
dddtree2 | dddtreecfs | dtfilters | idddtree
Introduced in R2013b

dddtreecfs

Extract dual-tree/double-density wavelet coefficients or projections

Syntax

```
out = dddtreecfs(outputtype,wt,outputspec,outputindices)
out = dddtreecfs(outputtype,wt,outputspec,outputindices,'plot')
```


Description

out $=$ dddtreecfs(outputtype, wt, outputspec, outputindices) extracts the coefficients or subspace projections from the 1-D or 2-D wavelet decomposition, wt. If outputtype equals 'e', out contains wavelet or scaling coefficients. If outputtype equals 'r', out contains wavelet or scaling subspace projections (reconstructions).
out = dddtreecfs(outputtype,wt,outputspec,outputindices,'plot') plots the signal or image reconstruction or specified analysis coefficients. You can include the 'plot ' option anywhere after the wt input.

Examples

Reconstruction from 1-D Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of the 1-D noisy Doppler signal. Reconstruct an approximation based on the level-three detail coefficients

Load the noisy Doppler signal. Obtain the complex dual-tree transform down to level 3.

```
load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1');
```

Plot a reconstruction of the original signal based on the level-three detail coefficients

```
xr = dddtreecfs('r',wt,'scale',{3},'plot');
```

Nodes of Tree: [3]

Coefficients from 1-D Complex Dual-Tree Wavelet Transform

Load the noisy Doppler signal. Obtain the complex dual-tree transform down to level 3.
load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1');
Create a cell array of vectors to obtain the second- and third-level detail coefficients from each of the wavelet filter bank trees.
outputindices = \{[2 1]; [2 2]; [3 1]; [3 2]\};
The first element of each vector in the cell array denotes the level, or stage. The second element denotes the tree.

Extract the detail coefficients.

```
out = dddtreecfs('e',wt,'ind',outputindices);
```

out is a 1-by- 4 cell array. The cell array elements contain the wavelet coefficients corresponding to the elements in outputindices. For example, out $\{1\}$ contains the level-two detail coefficients from the first tree.

1-D Complex Dual-Tree Wavelet Transform Structure

Load the noisy Doppler signal. Obtain the complex dual-tree transform down to level 3.

```
load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1');
```

Create a cell array of vectors to obtain the second- and third-level detail coefficients from each of the wavelet filter bank trees.

```
outputindices = {[2 1]; [2 2]; [3 1];[3 2]};
```

The first element of each vector in the cell array denotes the level, or stage. The second element denotes the tree.

Create a structure array identical to the wt output of dddtree with all the coefficients equal to zero except the first- and second-level detail coefficients.

```
out = dddtreecfs('e',wt,'cumind',outputindices);
```


Extract Diagonal Features from Image

Use the complex dual-tree wavelet transform to isolate diagonal features in an image at +45 and -45 degrees.

Load and display the xbox image.
load xbox;
imagesc (xbox)

Obtain the complex dual-tree wavelet transform down to level 3 .

```
fdf = dtfilters('FSfarras');
df = dtfilters('qshift10');
wt = dddtree2('cplxdt',xbox,3,fdf,df);
```

Isolate the +45 and -45 diagonal image features in the level-one wavelet coefficients. Plot the result.

```
out = dddtreecfs('e',wt,'ind',{[\begin{array}{llll}{1}&{1}&{2]; [11 3 2 2]},'plot');}\end{array}]=\mp@code{l}
```


Input Arguments outputtype - Output type

'e'| 'r'

Output type, specified as 'e' or ' r '. Use ' e ' to obtain the scaling or wavelet coefficients. Use ' r ' to obtain a projection, or reconstruction, onto the appropriate scaling or wavelet subspace.

wt - Wavelet transform

structure
Wavelet transform, specified as a structure. The structure array is the output of dddtree or dddtree2.

outputspec - Output specification

'lowpass' | 'scale' | 'ind' | 'cumind'
Output specification, specified as one of 'lowpass', 'scale', 'ind', or 'cumind'. The output specifications are defined as follows:

- ' lowpass ' - Outputs the lowpass, or scaling, coefficients or a signal/image approximation based on the scaling coefficients. If you set the output specification to 'lowpass', do not specify outputindices. If the outputtype is 'e', out is a structure array with fields identical to the input structure array wt except that all wavelet (detail) coefficients are equal to zero. If the outputtype is ' r ', out is a signal or image approximation based on the scaling coefficients. The signal or image approximation is equal in size to the original input to dddtree or dddtree2.
- 'scale' — Outputs the coefficients or a signal/image approximation based on the scales specified in outputindices. If the outputtype is ' e ', out is a cell array of structure arrays. The fields of the structure arrays in out are identical to the fields of the input structure array wt. The coefficients in the cfs field are all equal to zero except the coefficients corresponding to the scales in outputindices. If the outputtype is ' r ', out is a signal or image approximation based on the scales in outputindices. The signal or image approximation is equal in size to the original input to dddtree or dddtree2.
- 'ind ' - Outputs the coefficients or a signal/image approximation based on the treeposition indices specified in outputindices. If the outputtype is 'e', out is a cell array of vectors or matrices containing the coefficients specified by the tree-position indices in outputindices. If the outputtype is ' r ', out is a cell array of vectors or matrices containing signal or image approximations based on the corresponding treeposition indices in outputindices.
- 'cumind ' - Outputs the coefficients or a signal/image approximation based on the tree-position indices specified in outputindices. If the outputtype is 'e', out is a structure array. The fields of the structure array are identical to the fields of
the input structure array wt. The coefficients in the cfs field are all equal to zero except the coefficients corresponding to the tree positions in outputindices. If the outputtype is ' r ', out is a signal or image approximation based on the coefficients corresponding to the tree-position indices in outputindices.

Example: 'ind', \{[11]; [1 2]\}

outputindices - Output indices

cell array
Output indices, specified as a cell array with scalar or vector elements. If outputspec equals 'scale', a scalar element selects the corresponding element in the cfs field of wt. If outputspec equals 'ind ' or 'cumind ', the elements of outputspec are row vectors. The first element of the row vector corresponds to the element in the cfs field of wt. Subsequent elements in the row vector correspond to the indices of the array contained in the cell array element.

Example: 'scale', \{1;2;3\}

Output Arguments

out - Signal or image reconstruction or coefficients
 cell array | structure | vector | matrix

Signal or image reconstruction or coefficients, returned as a vector, matrix, structure array, cell array of vectors or matrices, or cell array of structure arrays. The form of out depends on the value of outputspec and outputindices.

See Also
dddtree | dddtree2 | plotdt
Introduced in R2013b

dddtree2

Dual-tree and double-density 2-D wavelet transform

Syntax

```
wt = dddtree2(typetree,x,level,fdf,df)
wt = dddtree2(typetree,x,level,fname)
wt = dddtree2(typetree,x,level,fname1,fname2)
```


Description

$w t=$ dddtree2(typetree, $x, l e v e l, f d f, d f)$ returns the typetree discrete wavelet transform of the 2-D input image, x, down to level, level. The wavelet transform uses the decomposition (analysis) filters, fdf, for the first level and the analysis filters, df, for subsequent levels. Supported wavelet transforms are the critically sampled DWT, double-density, real oriented dual-tree, complex oriented dual-tree, real oriented dual-tree double-density, and complex oriented dual-tree double-density wavelet transform. The critically sampled DWT is a filter bank decomposition in an orthogonal or biorthogonal basis (nonredundant). The other wavelet transforms are oversampled filter banks with differing degrees of directional selectivity.
$w t=$ dddtree2(typetree, x, level, fname) uses the filters specified by fname to obtain the wavelet transform. Valid filter specifications depend on the type of wavelet transform. See dtfilters for details.
wt = dddtree2(typetree, x, level,fname1,fname2) uses the filters specified in fname 1 for the first stage of the dual-tree wavelet transform and the filters specified in fname2 for subsequent stages of the dual-tree wavelet transform. Specifying different filters for stage 1 is valid and necessary only when typetree is 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'.

Examples

Real Oriented Dual-Tree Wavelets

Visualize the six directional wavelets of the real oriented dual-tree wavelet transform.

Create the first-stage analysis filters for the two trees.

Faf $\{1\}=[0$	0
-0.0884	-0.0112
0.0884	0.0112
0.6959	0.0884
0.6959	0.0884
0.0884	-0.6959
-0.0884	0.6959
0.0112	-0.0884
0.0112	-0.0884
0	$0] ;$
Faf $\{2\}=[$	$0.0112 \quad 0$
0.0112	0
-0.0884	-0.0884
0.0884	-0.0884
0.6959	0.6959
0.6959	-0.6959
0.0884	0.0884
-0.0884	0.0884
0	0.0112
0	$-0.0112] ;$

Create the analysis filters for subsequent stages of the multiresolution analysis.

$$
\begin{array}{cr}
\operatorname{af}\{1\}=[0.0352 & 0 \\
0 & 0 \\
-0.0883 & -0.1143 \\
0.2339 & 0 \\
0.7603 & 0.5875 \\
0.5875 & -0.7603 \\
0 & 0.2339 \\
-0.1143 & 0.0883 \\
0 & 0 \\
0 & -0.0352] ; \\
& \\
\text { af }\{2\}=[0 & -0.0352 \\
0 & 0 \\
-0.1143 & 0.0883 \\
0 & 0.2339 \\
0.5875 & -0.7603 \\
0.7603 & 0.5875 \\
0.2339 & 0 \\
-0.0883 & -0.1143
\end{array}
$$

$$
0.0352 \quad 0] \text {; }
$$

Obtain the real dual-tree wavelet transform of an image of zeros down to level 4.

```
J = 4;
L = 3*2^(J+1);
N = L/2^J;
x = zeros(2*L,3*L);
wt = dddtree2('realdt',x,J,Faf,af);
```

Insert a 1 in one position of the six subbands and invert the wavelet transform.

```
wt.cfs{4}(N/2,N/2+0*N,1,1) = 1;
wt.cfs{4}(N/2,N/2+1*N,2,1) = 1;
wt.cfs{4}(N/2,N/2+2*N,3,1) = 1;
wt.cfs{4}(N/2+N,N/2+O*N,1,2) = 1;
wt.cfs{4}(N/2+N,N/2+1*N,2,2) = 1;
wt.cfs{4}(N/2+N,N/2+2*N,3,2) = 1;
xrec = idddtree2(wt);
```

Visualize the six directional wavelets.
imagesc (xrec);
colormap gray; axis off;
title('Real Oriented Dual-Tree Wavelets')

Real Oriented Dual-Tree Wavelets

Double-Density Wavelet Transform

Obtain the double-density wavelet transform of an image.
Load the image and obtain the double-density wavelet transform.

```
load xbox;
imagesc(xbox); colormap gray;
wt = dddtree2('ddt',xbox,1,'filters1');
```


Visualize the diagonal details in the two wavelet HH subbands.

```
HH1 = wt.cfs{1}(:,:,5);
HH2 = wt.cfs{1}(:,:,8);
subplot(211)
imagesc(HH1);
colormap gray;
subplot(212);
imagesc(HH2);
```


Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of an image. Show that the complex dual-tree wavelet transform can detect the two different diagonal directions.

Load the image and obtain the complex dual-tree wavelet transform.

```
load xbox;
imagesc(xbox); colormap gray;
wt = dddtree2('cplxdt',xbox,1,'FSfarras','qshift10');
```


Obtain and display the imaginary parts of the 2 trees.

```
waveletcfs = wt.cfs{1};
subplot(211)
imagesc(waveletcfs(:,:,3,1,2));
colormap gray;
subplot(212)
imagesc(waveletcfs(:,:,3,2,2));
```


- "Analytic Wavelets Using the Dual-Tree Wavelet Transform"

Input Arguments

typetree - Type of wavelet decomposition

```
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'
```

Type of wavelet decomposition, specified as one of 'dwt', 'ddt', 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'. The type, 'dwt', produces a critically sampled (nonredundant) discrete wavelet transform. The other decomposition types produce oversampled wavelet transforms. 'ddt ' produces a double-density wavelet transform
with one scaling and two wavelet filters for both row and column filtering. The doubledensity wavelet transform uses the same filters at all stages. 'realdt' and 'cplxdt' produce oriented dual-tree wavelet transforms consisting of two and four separable wavelet transforms. 'realdddt ' and 'cplxdddt ' produce double-density dual-tree wavelet transforms. The dual-tree wavelet transforms use different filters for the first stage (level).

x - Input image

matrix
Input image, specified as a matrix with even-length row and column dimensions. Both the row and column dimensions must be divisible by 2^{L}, where L is the level of the wavelet transform. Additionally, the minimum of the row and column dimensions of the image must be greater than or equal to the product of the maximum length of the decomposition (analysis) filters and $2^{(L-1) \text {. }}$

Data Types: double

level - Level of wavelet decomposition

integer
Level of the wavelet decomposition, specified as a positive integer. If L is the value of level, 2^{L} must divide both the row and column dimensions of x. Additionally, the minimum of the row and column dimensions of the image must be greater than or equal to the product of the maximum length of the decomposition (analysis) filters and $2^{(L-1)}$.

fdf - Level-one analysis filters

matrix | cell array
The level-one analysis filters, specified as a matrix or cell array of matrices. Specify fdf as a matrix when typetree is 'dwt ' or 'ddt'. The size and structure of the matrix depend on the typetree input as follows:

- 'dwt' - This is the critically sampled discrete wavelet transform. In this case, fdf is a two-column matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter in the second column.
- 'ddt ' - This is the double-density wavelet transform. The double-density DWT is a three-channel perfect reconstruction filter bank. fdf is a three-column matrix with the lowpass (scaling) filter in the first column and the two highpass (wavelet) filters in the second and third columns. In the double-density wavelet transform, the single lowpass and two highpass filters constitute a three-channel perfect reconstruction
filter bank. This is equivalent to the three filters forming a tight frame. You cannot arbitrarily choose the two wavelet filters in the double-density DWT. The three filters together must form a tight frame.

Specify fdf as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'. The size and structure of the matrix elements in the cell array depend on the typetree input as follows:

- For the dual-tree complex wavelet transforms, 'realdt' and 'cplxdt', fdf\{1\} is an N -by- 2 matrix containing the lowpass (scaling) and highpass (wavelet) filters for the first tree and $\mathrm{fdf}\{2\}$ is an N -by- 2 matrix containing the lowpass (scaling) and highpass (wavelet) filters for the second tree.
- For the double-density dual-tree complex wavelet transforms, ' realdddt ' and ' cplxdddt', $\mathrm{fdf}\{1\}$ is an N-by- 3 matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the first tree and fdf $\{2\}$ is an N-by- 3 matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the second tree.

df - Analysis filters for levels > 1

matrix | cell array
Analysis filters for levels >1, specified as a matrix or cell array of matrices. Specify df as a matrix when typetree is 'dwt' or 'ddt'. The size and structure of the matrix depend on the typetree input as follows:

- 'dwt ' - This is the critically sampled discrete wavelet transform. In this case, df is a two-column matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter in the second column. For the critically sampled orthogonal or biorthogonal DWT, the filters in df and fdf must be identical.
- 'ddt' - This is the double-density wavelet transform. The double-density DWT is a three-channel perfect reconstruction filter bank. df is a three-column matrix with the lowpass (scaling) filter in the first column and the two highpass (wavelet) filters in the second and third columns. In the double-density wavelet transform, the single lowpass and two highpass filters constitute a three-channel perfect reconstruction filter bank. This is equivalent to the three filters forming a tight frame. For the double-density DWT, the filters in df and fdf must be identical.

Specify df as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'. For dual-tree transforms, the filters in fdf and df must be different. The size and structure of the matrix elements in the cell array depend on the typetree input as follows:

- For the dual-tree wavelet transforms, 'realdt' and 'cplxdt', df\{1\} is an N-by-2 matrix containing the lowpass (scaling) and highpass (wavelet) filters for the first tree and $d f\{2\}$ is an N-by- 2 matrix containing the lowpass (scaling) and highpass (wavelet) filters for the second tree.
- For the double-density dual-tree complex wavelet transforms, 'realdddt' and ' cplxdddt', df\{1\} is an N-by- 3 matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the first tree and $\mathrm{df}\{2\}$ is an N -by- 3 matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the second tree.

fname - Filter name

character vector
Filter name, specified as a character vector. For the critically sampled DWT, specify any valid orthogonal or biorthogonal wavelet filter. See wfilters for details. For the redundant wavelet transforms, see dtfilters for valid filter names.

fname1 - First-stage filter name

character vector
First-stage filter name, specified as a character vector. Specifying a first-level filter that is different from the wavelet and scaling filters in subsequent levels is valid and necessary only with the dual-tree wavelet transforms, 'realdt', 'cplxdt', 'realdddt', and 'cplxdddt'.

fname2 - Filter name for stages > 1

character vector
Filter name for stages >1, specified as a character vector. Specifying a different filter for stages >1 is valid and necessary only with the dual-tree wavelet transforms, 'realdt', 'cplxdt', 'realdddt', and 'cplxdddt'.

Output Arguments

wt - Wavelet transform

structure
Wavelet transform, returned as a structure with these fields:

```
type - Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'
```

Type of wavelet decomposition used in the analysis returned as one of 'dwt ', 'ddt', 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'. 'dwt' is the critically sampled DWT. 'ddt ' produces a double-density wavelet transform with one scaling and two wavelet filters for both row and column filtering. 'realdt' and 'cplxdt' produce oriented dual-tree wavelet transforms consisting of 2 and 4 separable wavelet transforms. 'realdddt' and 'cplxdddt' produce double-density dual-tree wavelet transforms consisting of two and four separable wavelet transforms.

level - Level of wavelet decomposition

positive integer
Level of wavelet decomposition, returned as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis) filters
 structure

Decomposition (analysis) and reconstruction (synthesis) filters, returned as a structure with these fields:

Fdf - First-stage analysis filters
 matrix | cell array

First-stage analysis filters, returned as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1
 matrix | cell array

Analysis filters for levels >1, returned as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters

matrix | cell array

First-level reconstruction filters, returned as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a 1-by- 2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > $\mathbf{1}$

matrix | cell array
Reconstruction filters for levels >1, returned as an N-by- 2 or N-by- 3 matrix for singletree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N -by- 3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

cfs - Wavelet transform coefficients

cell array of matrices
Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and structure of the matrix elements of the cell array depend on the type of wavelet transform, typetree as follows:

- 'dwt'-cfs\{j\}(:,:, d)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'ddt'-cfs\{j\}(:,:, d)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3,4,5,6,7,8$ is the orientation.
- cfs $\{$ level +1$\}(:,:)$ are the lowpass, or scaling, coefficients.
- 'realddt' — cfs\{j\}(:,:,d,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdt'-cfs\{j\}(:,:,d,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'realdddt'—cfs\{j\}(:,:,d,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdddt'—cfs\{j\}(:,:,d,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.

More About

- "Critically Sampled and Oversampled Wavelet Filter Banks"

```
See Also
dddtree | dddtreecfs | dtfilters | idddtree2
```

Introduced in R2013b

depo2ind

Node depth-position to node index

Syntax

Description

depo2ind is a tree-management utility.
For a tree of order ORD, $N=$ depo2ind (ORD, [D P]) computes the indices N of the nodes whose depths and positions are encoded within [D, P].

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
D and P are column vectors. The values of depths D and positions P must be such that D ≥ 0 and $0 \leq P \leq O R D^{D-1}$.

Output indices N are such that $0 \leq N<\left(O R D^{\max (D)}-1\right) / O R D-1$.
Note that for a column vector X, we have depo2ind $(0, X)=X$.

Examples

```
% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```



```
% List t nodes (Depth_Position).
aln_depo = allnodes(t,'deppos')
aln_depo =
    0
    0
    1
    2
    2 1
    2
    2 3
    0
    3 1
    3 6
    3 7
```

\% Switch from Depth Position to index.
aln_ind = depo2ind(ord,aln_depo)
aln_ind =
0
1
2
3
4
5
6
7
8
13
14

See Also
ind2depo
Introduced before R2006a

detcoef

1-D detail coefficients

Syntax

$D=\operatorname{detcoef}(C, L, N)$
$D=\operatorname{detcoef}(C, L)$

Description

detcoef is a one-dimensional wavelet analysis function.
$D=\operatorname{detcoef}(C, L, N)$ extracts the detail coefficients at level N from the wavelet decomposition structure [C,L]. See wavedec for more information on C and L.

Level N must be an integer such that $1 \leq \mathrm{N} \leq \operatorname{NMAX}$ where NMAX $=$ length (L) -2 .
$D=\operatorname{detcoef}(C, L)$ extracts the detail coefficients at last level NMAX.
If N is a vector of integers such that $1 \leq N(j) \leq$ NMAX:

- DCELL $=\operatorname{detcoef}\left(C, L, N, ' c e l l s^{\prime}\right)$ returns a cell array where $\operatorname{DCELL}\{j\}$ contains the coefficients of detail $N(\mathrm{j})$.
- If length $(N)>1, \operatorname{DCELL}=\operatorname{detcoef}(C, L, N)$ is equivalent to DCELL $=$ detcoef(C,L,N, 'cells').
- DCELL $=\operatorname{detcoef}\left(C, L,{ }^{\prime}\right.$ cells' $)$ is equivalent to DCELL $=\operatorname{detcoef}(C, L$, [1:NMAX]).
 coefficients at levels $[N(1), \ldots, N(p)]$.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load original one-dimensional signal.

See Also

appcoef | wavedec

Introduced before R2006a

detcoef2

2-D detail coefficients

Syntax

$D=\operatorname{detcoef} 2(0, C, S, N)$

Description

detcoef2 is a two-dimensional wavelet analysis function.
$D=\operatorname{detcoef} 2(0, C, S, N)$ extracts from the wavelet decomposition structure [C,S] the horizontal, vertical, or diagonal detail coefficients for $0=$ ' h ((or 'v' or 'd', respectively), at level N, where N must be an integer such that $1 \leq N \leq \operatorname{size}(S, 1)-2$. See wavedec2 for more information on C and S.
[H, V, D] = detcoef2('all', C, S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N .
$D=\operatorname{detcoef} 2\left(\right.$ ' compact $\left.^{\prime}, C, S, N\right)$ returns the detail coefficients at level N, stored row-wise.
detcoef2('a', C, S, N) is equivalent to detcoef2('all', C, S, N).
detcoef2('c', C, S, N) is equivalent to detcoef2('compact', C, S, N).

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load original image.
load woman;
\% X contains the loaded image.

```
% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
sizex = size(X)
sizex =
    256 256
sizec = size(c)
sizec =
    1 65536
val_s = s
val_s =
    64 64
    64 64
    128 128
    256 256
% Extract details coefficients at level 2
% in each orientation, from wavelet decomposition
% structure [c,s].
[chd2,cvd2,cdd2] = detcoef2('all',c,s,2);
sizecd2 = size(chd2)
sizecd2 =
    64 64
% Extract details coefficients at level 1
% in each orientation, from wavelet decomposition
% structure [c,s].
[chd1,cvd1,cdd1] = detcoef2('all',c,s,1);
sizecd1 = size(chd1)
sizecd1 =
    128 128
```


More About

Tips

If C and S are obtained from an indexed image analysis or a truecolor image analysis, D is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.
See Also
appcoef2| wavedec2
Introduced before R2006a

disp

WPTREE information

Syntax

$\operatorname{disp}(T)$

Description

disp (T) displays the content of the WPTREE object T ．

Examples

\％Compute a wavelet packets tree
$x=\operatorname{rand}(1,1000)$ ；
$t=$ wpdec（ $x, 2$, ＇$\left.^{\prime} \mathrm{b}^{\prime}{ }^{\prime}\right)$ ；
disp（t）
Wavelet Packet Object Structure
＝ニニニニニニニニニニニニニニニニニニニニニニニニニニ＝ニ＝＝＝＝
Size of initial data ：［1 1000］
Order ： 2
Depth ： 2
Terminal nodes ：［ 3 3 4 5 5 6 $]$
\qquad
Wavelet Name ：db2
Low Decomposition filter ：［ $\left.\begin{array}{lllll}-0.1294 & 0.2241 & 0.8365 & 0.483\end{array}\right]$
High Decomposition filter ：［ $\begin{array}{lllll}-0.483 & 0.8365 & -0.2241 & -0.1294]\end{array}$
Low Reconstruction filter ：［ $\begin{array}{lllll}0.483 & 0.8365 & 0.2241 & -0.1294]\end{array}$
High Reconstruction filter ：［ $\left.\begin{array}{lllll}-0.1294 & -0.2241 & 0.8365 & -0.483\end{array}\right]$
Entropy Name ：shannon
Entropy Parameter ： 0

See Also
 get｜read｜set｜write

Introduced before R2006a

displs

Display lifting scheme

Syntax

$S=$ displs(LS,FRM)

Description

$S=$ displs $(L S, F R M)$ returns a character vector describing the lifting scheme $L S$. The format character vector FRM (see sprintf) builds S.
displs(LS) is equivalent to DISPLS(LS,'\%12.8f')
For more information about lifting schemes, see lsinfo.

Examples

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Visualize the obtained lifting scheme.
displs(lshaar);
lshaar = {...
'd' [ -1.00000000] [0]
'p' [ 0.50000000] [0]
[ 1.41421356] [ 0.70710678] []
};
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);
lsnew = {...
```

'd'	$[-1.00000000]$	$[0]$	
${ }^{\prime} p^{\prime}$	$\left[\begin{array}{l}0.50000000]\end{array}\right.$	$[0]$	
${ }^{\prime} p^{\prime}$	$[-0.12500000$	$0.12500000]$	$[0]$
$[1.41421356]$	$[0.70710678]$	[]	

See Also
 lsinfo

Introduced before R2006a

drawtree

Draw wavelet packet decomposition tree (GUI)

Syntax

drawtree(T)
$\mathrm{F}=\mathrm{drawtree}(T)$
drawtree (T, F)

Description

drawtree (T) draws the wavelet packet tree T, and $\mathrm{F}=\operatorname{drawtree}(T)$ also returns the figure's handle.

For an existing figure F produced by a previous call to the drawtree function, drawtree (T, F) draws the wavelet packet tree T in the figure whose handle is F .

Examples

```
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db2');
fig = drawtree(t);
```


See Also
 readtree

Introduced before R2006a

diffilters

Analysis and synthesis filters for oversampled wavelet filter banks

Syntax

```
df = dtfilters(name)
[df,rf] = dtfilters(name)
```


Description

df = dtfilters(name) returns the decomposition (analysis) filters corresponding to the character vector, name.
[df,rf] = dtfilters(name) returns the reconstruction (synthesis) filters corresponding to the character vector, name.

Examples

Filters for Complex Dual-Tree Wavelet Transform

Obtain valid filters for the complex dual-tree wavelet transform. The transform uses Farras nearly symmetric filters for the first stage and Kingsbury Q-shift filters with 10 taps for subsequent stages.

Load the noisy Doppler signal. Obtain the filters for the first and subsequent stages of the complex dual-tree wavelet transform. Demonstrate perfect reconstruction using the complex dual-tree wavelet transform.

```
load noisdopp;
df = dtfilters('dtf2');
dt = dddtree('cplxdt',noisdopp,5,df{1},df{2});
xrec = idddtree(dt);
max(abs(noisdopp-xrec))
ans =
```


Filters for Double-Density Wavelet Transform

Obtain valid filters for the double-density wavelet transform.
Load the noisy Doppler signal. Obtain the filters for the double-density wavelet transform. The double-density wavelet transform uses the same filters at all stages. Demonstrate perfect reconstruction using the double-density wavelet transform.

```
df = dtfilters('filters1');
load noisdopp;
dt = dddtree('ddt',noisdopp,5,df,df);
xrec = idddtree(dt);
max(abs(noisdopp-xrec))
ans =
```

 \(2.3981 \mathrm{e}-13\)

Input Arguments

name - Filter name

```
'dtf1' | 'dddtf1' | 'self1' | 'self2' | ...
```

Filter name, specified as a character vector. Valid entries for name are:

- Any valid orthogonal or biorthogonal wavelet name. See wfilters for details. An orthogonal or biorthogonal wavelet is only valid when the filter bank type is 'dwt ', or when you use the filter as the first stage in a complex dual-tree transform, 'realdt' or 'cplxdt '. An orthogonal or biorthogonal wavelet filter is not a valid filter if you have a double-density, 'ddt ' or dual-tree double-density, ' realdddt ' or ' cplxdddt', filter bank. An orthogonal or biorthogonal wavelet filter is not a valid filter for complex dual-tree filter banks for stages greater than 1.
- 'dtfP' - With P equal to 1, 2, 3, or 4 returns the first-stage Farras filters ('FSfarras ') and Kingsbury Q-shift filters ('qshiftN ' for subsequent stages. This input is only valid for a dual-tree transform, 'realdt' or 'cplxdt'. Setting
$P=1,2,3$, or 4 specifies the Kingsbury Q -shift filters with $\mathrm{N}=6,10,14$, or 18 taps respectively.
- 'dddtf1' - Returns the filters for the first and subsequent stages of the doubledensity dual-tree transform. This input is only valid for the double-density dual-tree transforms, 'realdddt' and 'cplxdddt'.
- 'self1' - Returns 10-tap filters for the double-density wavelet transform. This option is only valid for double-density wavelet transforms, 'ddt', 'realdddt', and 'cplxdddt'.
- 'self2' - Returns 16 -tap filters for the double-density wavelet transform. This option is only valid for double-density wavelet transforms, 'ddt', 'realdddt', and 'cplxdddt'.
- 'filters1' - Returns 6-tap filters for the double-density wavelet transform, 'ddt'.
- 'filters2' - Returns 12 -tap filters for the double-density wavelet transform, 'ddt'.
- 'farras' - Farras nearly symmetric filters for a two-channel perfect reconstruction filter bank. This option is only valid for an orthogonal critically sampled wavelet transform, 'dwt'.
- he 'FSfarras ' - Farras nearly symmetric first-stage filters for a dual-tree wavelet transform.
- 'qshiftN ' - Kingsbury Q-shift N-tap filters with $\mathrm{N}=6,10,14$, or 18 . The Kingsbury Q-shift filters are most commonly used in dual-tree wavelet transforms for stages greater than 1.
- 'doubledualfilt' - Filters for one stage of the double-density dual-tree wavelet transforms, 'realdddt' or 'cplxdddt'.

Output Arguments

df - Decomposition (analysis) filters

matrix | cell array
Decomposition (analysis) filters, returned as a matrix or cell array of matrices.

rf - Reconstruction (synthesis) filters

matrix | cell array
Reconstruction (synthesis) filters, returned as a matrix or cell array of matrices.
See Also
dddtree | dddtree2
Introduced in R2013b

dtree

DTREE constructor

Syntax

```
T = dtree(ORD,D,X)
T = dtree(ORD,D,X,U)
[T,NB] = dtree(...)
[T,NB] = dtree('PropName1',PropValue1,'PropName2',PropValue2,...)
```


Description

T = dtree(ORD, D, X) returns a complete data tree (DTREE) object of order ORD and depth D. The data associated with the tree T is X.

With $T=$ dtree (ORD, D, X, U) you can set a user data field.
$[T, N B]=$ dtree (...) returns also the number of terminal nodes (leaves) of T.
[T,NB] = dtree('PropName1',PropValue1,'PropName2',PropValue2,...) is the most general syntax to construct a DTREE object.

The valid choices for 'PropName ' are

'order'	Order of the tree
'depth '	Depth of the tree
'data'	Data associated to the tree
'spsch'	Split scheme for nodes
'ud '	User data field

The split scheme field is an order ORD by 1 logical array. The root of the tree can be split and it has ORD children. If $\operatorname{spsch}(\mathrm{j})=1$, you can split the j-th child. Each node that you can split has the same property as the root node.

For more information on object fields, type help dtree/get.

Class DTREE (Parent class: NTREE)

Fields

dtree	Parent object
allNI	All nodes information
terNI	Terminal nodes information

Examples

\% Create a data tree.
x = [1:10];
$\mathrm{t}=\mathrm{dtree}(3,2, \mathrm{x})$;
$\mathrm{t}=$ nodejoin($\mathrm{t}, 2$);

See Also

ntree | wtbo

Introduced before R2006a

dwt

Single-level discrete 1-D wavelet transform

Syntax

```
[cA,cD] = dwt(X,'wname')
[cA,cD] = dwt(X,Lo_D,Hi_D)
[cA,cD] = dwt(...,'mode',MODE)
```


Description

The dwt command performs a single-level one-dimensional wavelet decomposition. Compare this function to wavedec, which may be more useful for your application. The decomposition is done with respect to either a particular wavelet ('wname ', see wfilters for more information) or particular wavelet decomposition filters (Lo_D and Hi_D) that you specify.
[cA, cD] = dwt(X,'wname') computes the approximation coefficients vector cA and detail coefficients vector cD, obtained by a wavelet decomposition of the vector X . The character vector 'wname' contains the wavelet name.
[cA, cD] = dwt (X,Lo_D,Hi_D) computes the wavelet decomposition as above, given these filters as input:

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.
Let $l x=$ the length of X and $l f=$ the length of the filters Lo_D and Hi_D; then length $(c A)=$ length $(c D)=$ la where $l a=\operatorname{ceil}(l x / 2)$, if the $\bar{D} W T$ extension mode is set to periodization. For the other extension modes, la $=$ floor (lx+lf-1)/2.

For more information about the different Discrete Wavelet Transform extension modes, see dwtmode.
[$\mathrm{CA}, \mathrm{cD}]=\mathrm{dwt}(\ldots$, 'mode', MODE) computes the wavelet decomposition with the extension mode MODE that you specify. MODE is a character vector containing the desired extension mode.

Example:
[cA, cD] = dwt(x,'db1','mode','sym');

Examples

DWT Using Wavelet Name

Obtain the level-1 DWT of the noisy Doppler signal using a wavelet name.

```
load noisdopp;
[A,D] = dwt(noisdopp,'sym4');
[Lo_D,Hi_D] = wfilters('bior3.5','d');
[A,D] = dwt(noisdopp,Lo_D,Hi_D);
```


DWT Using Wavelet and Scaling Filters

Obtain the level-1 DWT of the noisy Doppler signal using wavelet and scaling filters.

```
load noisdopp;
[Lo_D,Hi_D] = wfilters('bior3.5','d');
[A,D] = dwt(noisdopp,Lo_D,Hi_D);
```


More About

Algorithms

Starting from a signal s of length N, two sets of coefficients are computed: approximation coefficients $C A_{1}$, and detail coefficients $C D_{1}$. These vectors are obtained by convolving s with the low-pass filter Lo_D for approximation and with the high-pass filter Hi_D for detail, followed by dyadic decimation.

More precisely, the first step is

The length of each filter is equal to $2 L$. For signal of length N, the signals F and G are of length $N+2 L-1$, and then the coefficients $C A_{1}$ and $C D_{1}$ are of length

$$
\left\lfloor\frac{N-1}{2}+L\right\rfloor .
$$

To deal with signal-end effects involved by a convolution-based algorithm, a global variable managed by dwtmode is used. This variable defines the kind of signal extension mode used. The possible options include zero-padding (used in the previous example) and symmetric extension, which is the default mode.

Note For the same input, this dwt function and the DWT block in the Signal Processing Toolbox ${ }^{\mathrm{TM}}$ do not produce the same results. The blockset is designed for real-time implementation while Wavelet Toolbox ${ }^{\mathrm{TM}}$ software is designed for analysis, so they produce handle boundary conditions and filter states differently.

To make the dwt function output match the DWT block output, set the function boundary condition to zero-padding by typing dwtmode ('zpd') at the MATLAB ${ }^{\circledR}$ command prompt. To match the latency of the DWT block, which is implemented using FIR filters, add zeros to the input of the dwt function. The number of zeros you add must be equal to half the filter length.

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also
dwtmode | idwt | wavedec | waveinfo
Introduced before R2006a

dwt2

Single-level discrete 2-D wavelet transform

Syntax

```
[cA,cH,cV,cD] = dwt2(X,'wname')
[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)
[cA,cH,cV,cD] = dwt2(...,'mode',MODE)
```


Description

The dwt2 command performs a single-level two-dimensional wavelet decomposition. Compare this function to wavedec2, which may be more useful for your application. The decomposition is done with respect to either a particular wavelet ('wname', see wfilters for more information) or particular wavelet decomposition filters (Lo_D and Hi_D) you specify.
[$\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}]=\mathrm{dwt2}(\mathrm{X}$, 'wname') computes the approximation coefficients matrix CA and details coefficients matrices cH, cV, and cD (horizontal, vertical, and diagonal, respectively), obtained by wavelet decomposition of the input matrix X. The 'wname' character vector contains the wavelet name.
$[\mathrm{CA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}]=\mathrm{dwt2}(\mathrm{X}, \mathrm{Lo}$ _D, Hi_D) computes the two-dimensional wavelet decomposition as above, based on wavelet decomposition filters that you specify.

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.
Let $s x=\operatorname{size}(X)$ and lf $=$ the length of filters; then size $(c A)=\operatorname{size}(c H)=\operatorname{size}(c V)=\operatorname{size}(c D)=s a$ where sa $=\operatorname{ceil}(s x / 2)$, if the DWT extension mode is set to periodization. For the other extension modes, sa = floor ((sx+lf-1)/2).

For information about the different Discrete Wavelet Transform extension modes, see dwtmode.
[cA, cH, cV, cD] = dwt2(...,'mode', MODE) computes the wavelet decomposition with the extension mode MODE that you specify.

MODE is a character vector containing the desired extension mode.
An example of valid use is
[cA,cH,cV,cD] = dwt2(x,'db1','mode','sym');

Examples

2-D DWT of Image

This example shows how to obtain the 2-D DWT of an image.
Load the "woman" image and obtain the 2-D DWT using the 'sym4' wavelet. Use the periodic extension mode.

```
load woman;
wname = 'sym4';
[CA,CH,CV,CD] = dwt2(X,wname,'mode','per');
```

Display the vertical detail image and the lowpass approximation.

```
subplot(211)
imagesc(CV); title('Vertical Detail Image');
colormap gray;
subplot(212)
imagesc(CA); title('Lowpass Approximation');
```


More About

Tips

When X represents an indexed image, then X , as well as the output arrays $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$ are m-by-n matrices. When X represents a truecolor image, it is an m-by- n-by- 3 array, where each m-by- n matrix represents a red, green, or blue color plane concatenated along the third dimension.

For more information on image formats, see the image and imfinfo reference pages.

Algorithms

For images, there exist an algorithm similar to the one-dimensional case for twodimensional wavelets and scaling functions obtained from one- dimensional ones by tensorial product.

This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at level j in four components: the approximation at level $j+1$, and the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition steps for images:

Two-Dimensional DWT

Where $2 \nmid 1$ Downsample columns: keep the even indexed columns
$1 \nmid 2$ Downsample rows: keep the even indexed rows
rows
X Convolve with filter X the rows of the entry
columns
X Convolve with filter X the columns of the entry
Initialization $\quad C A_{0}=s$ for the decomposition initialization

Note To deal with signal-end effects involved by a convolution-based algorithm, a global variable managed by dwtmode is used. This variable defines the kind of signal extension
mode used. The possible options include zero-padding (used in the previous example) and symmetric extension, which is the default mode.

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also
dwtmode | idwt2 | wavedec2 | waveinfo
Introduced before R2006a

dw+3

Single-level discrete 3-D wavelet transform

Syntax

```
WT = dwt3(X,'wname')
WT = dwt3(X,'wname','mode','ExtM')
WT = dwt3(X,W,...)
WT = dwt3(X,WF,...)
```


Description

dwt3 performs a single-level three-dimensional wavelet decomposition using either a particular wavelet ('wname') or the wavelet decomposition and reconstruction filters you specify. The decomposition also uses the specified DWT extension mode (see dwtmode).

WT $=\operatorname{dwt} 3(\mathrm{X}$, ' wname ' $)$ returns the 3 -D wavelet transform of the 3-D array X 'wname ' is a character vector containing the wavelet name. The default extension mode is 'sym'. For more information on wname, see wfilters.

WT = dwt3(X,'wname','mode','ExtM') uses the extension mode 'ExtM'.
WT is a structure with the following fields shown in the table.

sizeINI	Size of the three-dimensional array X.
mode	Name of the wavelet transform extension mode.
filters	Structure with four fields: LoD, HiD, LoR, HiR, which are the filters used for DWT.
dec	$2 \times 2 \times 2$ cell array containing the coefficients of the decomposition.
dec $\{i, j, k\}, i, j, k=1$ or 2 contains the coefficients obtained by low-pass filtering (for i or j or $k=1$) or high-pass filtering for i or j or $k=2)$	

WT $=\operatorname{dwt3}(X, W, \ldots)$ specify three wavelets, one for each direction. $W=$ \{'wname1', 'wname2', 'wname3'\} or W is a structure with 3 fields 'w1', 'w2', 'w3' containing character vectors that are the names of wavelets.

WT $=$ dwt3 (X,WF, ...) specify four filters, two for decomposition, and two for reconstructionm or 3×4 filters (one quadruplet by direction). WF is either a cell array (1×4) or (3×4) : \{LoD, HiD, LoR, HiR $\}$ or a structure with the four fields 'LoD', 'HiD','LoR','HiR'.

Examples

```
% Define the original 3-D data.
X = reshape(1:64,4,4,4)
X(:,:,1) =
\begin{tabular}{rrrr}
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
4 & 8 & 12 & 16
\end{tabular}
X(:,:,2) =
\begin{tabular}{llll}
17 & 21 & 25 & 29 \\
18 & 22 & 26 & 30 \\
19 & 23 & 27 & 31 \\
20 & 24 & 28 & 32
\end{tabular}
X(:,:,3) =
    33
    34 38 42 46
    35 39 43 47
    36 40 44 48
X(:,:,4) =
    49 53 57 61
    50 54 58 62
    51 55 59 63
    52 56 60 64
```

```
% Perform single level decomposition of X using db1.
wt = dwt3(X,'db1')
wt =
    sizeINI: [4 4 4]
    filters: [1x1 struct]
        mode: 'sym'
        dec: {2x2x2 cell}
% Decompose X using db2.
[LoD,HiD,LoR,HiR] = wfilters('db2');
wt = dwt3(X,{LoD,HiD,LoR,HiR})
wt =
    sizeINI: [4 4 4]
    filters: [1x1 struct]
        mode: 'sym'
        dec: {2x2x2 cell}
% Decompose X using different wavelets, one for
% each orientation (db1, db2 and again db1).
WS = struct('w1','db1','w2','db2','w3','db1');
wt = dwt3(X,WS,'mode','per')
wt =
    sizeINI: [4 4 4 4]
    filters: [1x1 struct]
        mode: 'per'
        dec: {2x2x2 cell}
WF = wt.filters;
% Decompose X using the filters given by WF and
% set the extension mode to symmetric.
wtBIS = dwt3(X,WF,'mode','sym')
wtBIS =
    sizeINI: [4 4 4]
    filters: [1x1 struct]
```

```
mode: 'sym'
dec: {2x2x2 cell}
```


See Also

```
dwtmode | idwt3 | wavedec3 | waverec3 | waveinfo | wfilters
Introduced in R2010a
```


dwtleader

Multifractal 1-D wavelet leader estimates

Syntax

```
[dh,h] = dwtleader(x)
[dh,h,cp] = dwtleader(x)
[dh,h,cp,tauq] = dwtleader(x)
[dh,h,cp,tauq,leaders] = dwtleader(
```

\qquad

```
[dh,h,cp,tauq,leaders,structfunc] = dwtleader(___)
[___] ] dwtleader(x,wname)
[___] = dwtleader(___,Name,Value)
```


Description

[dh,h] = dwtleader(x) returns the singularity spectrum, dh, and the Holder exponents, h, for the 1-D real-valued data, x. The singularity spectrum and Holder exponents are estimated for the linearly-spaced moments of the structure functions from -5 to +5 .
[dh,h, cp] = dwtleader (x) also returns the first three log cumulants, $c p$ of the scaling exponents..
[dh,h,cp,tauq] = dwtleader(x) also returns the scaling exponents for the linearly spaced moments from -5 to 5 . Wavelet leaders are not defined for the finest scale.
[dh,h, cp,tauq, leaders] = dwtleader(__) also returns the wavelet leaders by scale.
[dh,h, cp,tauq, leaders, structfunc] = dwtleader(___) also returns the multiresolution structure functions.
[___]= dwtleader(x, wname) uses the orthogonal or biorthogonal wavelet specified by wname to compute the wavelet leaders and the fractal estimates.
[___] = dwtleader(\qquad , Name, Value) returns the wavelet leaders and other specified outputs with additional options specified by one or more Name, Value pair arguments.

Examples

Multifractal Spectrum of Heart-Rate Variability

Compare the multifractal spectrum of heart-rate variability data before and after application of a drug that reduces heart dynamics.

```
load hrvDrug;
predrug = hrvDrug(1:4642);
postdrug = hrvDrug(4643:end);
[dhpre,hpre] = dwtleader(predrug);
[dhpost,hpost] = dwtleader(postdrug);
plot(hpre,dhpre,hpost,dhpost)
xlabel('h')
ylabel('D(h)')
grid on
legend('Predrug','Postdrug')
```


The spread of the Holder exponent values before drug administration (approximately 0.08 to 0.55) is much larger than the spread of the values afterward (approximately 0.08 to 0.31). This indicates that the heart rate has become more monofractal.

Brownian Noise Singularity Spectrum

Compute the singularity spectrum and cumulants for a Brownian noise process.
Create the Brownian noise signal.
rng(100);
$x=\operatorname{cumsum}\left(\operatorname{randn}\left(2^{\wedge} 15,1\right)\right)$;
Obtain and plot the singularity spectrum.

```
[dh,h,cp] = dwtleader(x);
plot(h,dh, 'o-','MarkerFaceColor','b')
grid on
title({'Singularity Spectrum'; ['First Cumulant ' num2str(cp(1))]})
```

Singularity Spectrum
First Cumulant 0.49875

The small spread in the Holder exponents (approximately 0.472 to 0.512) indicates that this Brownian noise signal can be characterized by a global Holder exponent of 0.49875. The theoretical Holder exponent for Brownian motion is 0.5 .

Obtain the cumulants.
cp
cp =
$0.4987 \quad-0.0052 \quad-0.0008$

The first cumulant value is the slope of scaling exponents versus the moments. The second and third cumulants indicate the deviation from linearity. The first cumulant value and near-zero values of the second and third cumulants indicate that the scaling exponents are a linear function of the moments. Therefore, this Brownian motion signal is monofractal.

Multifractal Random Walk Cumulants

Compute the cumulants for a multifractal random walk. The multifractal random walk is a realization of a random process with a theoretical first cumulant of 0.75 and a second cumulant -0.05 . The second cumulant value of -0.05 indicates that the scaling exponents deviate from a linear function with slope 0.75 .

Load a random walk signal.
load mrw07505;
Obtain and display the first and second cumulants.

```
[~,~,cp,tauq] = dwtleader(mrw07505);
cp([11 2])
ans =
    0.7475 -0.0473
```

For monofractal processes, the scaling exponents are a linear function of the moments. Linearity is indicated by the second and third cumulants being close to zero. In this case, the nonzero second cumulant indicates that the process is multifractal.

Plot the scalaing exponents for the q th moments.

```
plot(-5:5,tauq,'bo--'); title('Estimated Scaling Exponents');
grid on
xlabel('qth Moments')
ylabel('\tau(q)')
```


The scaling exponents are a nonlinear function of of the moments.

- "Multifractal Analysis"

Input Arguments

x - Input signal
vector of real values
Input signal, specified as a 1-D vector of real values. For the default wavelet and minimum regression level, the time series must have at least 248 samples. For nondefault values, the minimum-required data length depends on the wavelet filter and
the levels used in the regression model. The wavelet leaders technique works best for data with 8000 or more samples.

wname - Wavelet name

'bior1.5' (default) | character vector

Wavelet name, specified as a character vector. wname is a wavelet family short name and filter number recognized by the wavelet manager, wavemgr.

To query valid wavelet family short names, use wavemngr('read '). To determine whether a particular wavelet is orthogonal or biorthogonal, use waveinfo with the wavelet family short name, for example, waveinfo('db'). Alternatively, use wavemngr with the 'type ' option, for example, wavemngr('type', 'fk4'). A returned value of 1 indicates an orthogonal wavelet. A returned value of 2 indicates a biorthogonal wavelet.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.

Example: 'MinRegressionLevel' , 5 sets the minimum regression level to 5.

'MinRegressionLevel' - Minimum regression level
 3 (default) | positive integer

Minimum regression level, minlev, specified as the comma-separated pair consisting of 'MinRegressionLevel' and a positive integer greater than or equal to 2. Only levels greater than or equal to the specified minimum level are used in the multifractal estimates. dwt leader requires at least 6 wavelet leaders at the maximum level and two levels to be used in the multifractal estimates. The scale in the discrete wavelet transform corresponding to the minimum level is two ${ }^{\text {minlev }}$. The smoother the data (that is, the closer the Holder exponents are to 1), the less likely that reducing the minimum regression level will degrade the results.

'MaxRegressionLevel' - Maximum regression level
 positive integer

Maximum regression level, maxlev, specified as a positive integer greater than or equal to minlev +1 . The maximum level uses only levels less than or equal to maxlev in the
multifractal estimates. The scale in the discrete wavelet transform corresponding to the maximum level is $2^{\text {maxlev }}$. Specify a maximum regression level when you want to restrict the levels used in the regression to a value less than the default level. To determine the number of wavelet leaders by level, use the leaders output argument, or the weights field of the structfunc output argument. The default value is the largest level with at least six wavelet leaders

Output Arguments

dh - Singularity spectrum

vector
Singularity spectrum, returned as a vector. The singularity spectrum is estimated using structure functions determined for the linearly-spaced moments from -5 to 5 . The structure functions are computed based on the wavelet leaders obtained using the biorthogonal spline wavelet filter. The biorthogonal spline wavelet filter that is used has one vanishing moment in the synthesis wavelet and five vanishing moments in the analysis wavelet ('bior1.5'). By default, multifractal estimates are derived from wavelet leaders at a minimum level of 3 and maximum level where there are at least six wavelet leaders.

h - Holder exponent estimates

1 -by-11 vector of real scalars
Holder exponent estimates, returned as a 1-by-11 vector of scalars. Holder exponents characterize signal regularity. The closer a Holder exponent is to 1 , the closer the function is to differentiable. Conversely, the closer the Holder exponent is to zero, the closer the function is to discontinuous.

Data Types: double
cp - Cumulants
vector
Cumulants, returned as a 1-by-3 vector of scalars. The vector contains the first three log cumulants of the scaling exponents. The first cumulant characterizes the linear behavior in the scaling exponents. The second and third cumulants characterize the departure from linearity.

[^1]
tauq - Scaling exponents

column vector
Scaling exponents, returned as a column vector. The exponents are for the linearlyspaced moments from -5 to +5 .

leaders - Wavelet leaders

cell array
leaders is a cell array with the i th element containing the wavelet leaders at level $i+1$, or scale $2^{(i+1)}$. Wavelet leaders are not defined at level 1.

structfunc - Multiresolution structure functions

struct

Multiresolution structure functions for the global Holder exponent estimates, returned as a struct. The structure function for data x is defined as

$$
S(q, a)=\frac{1}{n_{a}} \sum_{k=1}^{n_{a}}\left|T_{x}(a, k)\right|^{q} \simeq a^{\zeta(q)},
$$

where a is the scale, q is the moment, T_{x} are the wavelet leaders by scale, n_{a} is the number of wavelet leaders at each scale, and $\zeta(q)$ is the scaling exponent. Expanding $\zeta(q)$ to a polynomial produces

$$
\zeta(q)=c_{1} q+c_{2} q^{2} / 2+c 3 q^{3} / 6+\ldots
$$

The scaling exponents can be estimated from the log-cumulants of the wavelet leader coefficients. When $\zeta(q)$ is a linear function, the signal is monofractal. When it deviates from linear, the signal is multifractal.
structfunc is a structure array containing the following fields:

- Tq - Measurements of the input, x, at various scales. Tq is a matrix of multiresolution quantities that depend jointly on time and scale. Scaling phenomena
in x imply a power-law relationship between the moments of Tq and the scale. For dwtleader, the Tq field is an $N s$-by- 36 matrix, where $N s$ is the number of scales used in the multifractal estimates. The first 11 columns of Tq are the scaling exponent estimates by scale for each of the q th moments from -5 to 5 . The next 11 columns contain the singularity spectrum estimates, dh , for each of the q th moments. Columns $23-33$ contain the Holder exponent estimates, h. The last three columns contain the estimates for the first-order, second-order, and third-order cumulants, respectively.
- weights - Weights used in the regression. The weights are the number of wavelet leaders by scale. weights is an $N s$-by- 1 vector.
- logscales - Scales used as predictors in the regression. logscales is an Ns-by-1 vector with the base-2 logarithm of the scales.

More About

Algorithms

Wavelet leaders are derived from the critically sampled discrete wavelet transform (DWT) coefficients. Wavelet leaders offer significant theoretical advantages over wavelet coefficients in the multifractal formalism. Wavelet leaders are time- or space-localized suprema of the absolute value of the discrete wavelet coefficients. The time localization of the suprema requires that the wavelet coefficients are obtained using a compactly supported wavelet. The Holder exponents, which quantify the local regularity, are determined from these suprema. The singularity spectrum indicates the size of the set of Holder exponents in the data.

1-D wavelet leaders are defined as

$$
L_{x}(j, k)=\sup _{\lambda^{\prime} \subset 3 \lambda_{j, k}}\left|d_{x}(j, k)\right|
$$

where the scales are 2^{j}, translated to time positions $2^{j} k$. The time neighborhood is $3 \lambda_{j, k}=\lambda_{j, k-1} \cup \lambda_{j, k} \cup \lambda_{j, k+1}$, where $\lambda_{j, k}=\left[k 2^{j},(k+1) 2^{j}\right)$. The time neighborhood is taken over the scale and all finer scales. $d_{x}(j, k)$ are the wavelet coefficients.

To calculate the wavelet leaders, $L_{x}(j, k)$:
1 Compute the wavelet coefficients, $d_{x}(j, k)$, using the discrete wavelet transform and save the absolute value of each coefficient for each scale. Each finer scale has twice the number of coefficients than the next coarser scale. Each dyadic interval at scale 2^{j} can be written as a union of two intervals at a finer scale.

$$
\begin{aligned}
& {\left[2^{j} k, 2^{j}(k+1)\right)=\left[2^{j-1}(2 k), 2^{j-1}(2 k+2)\right)} \\
& {\left[2^{j-1}(2 k), 2^{j-1}(2 k+2)\right)=\left[2^{j-1}(2 k), 2^{j-1}(2 k+1)\right) \cup\left[2^{j-1}(2 k+1), 2^{j-1}(2 k+2)\right)}
\end{aligned}
$$

2 Start at the scale that is one level coarser than the finest obtained scale.
3 Compare the first value to all its finer dyadic intervals and obtain the maximum value.

4 Go to the next value and compare its value to all of its finer scale values.
5 Continue comparing the values with their nested values and obtaining the maxima.
6 From the maximum values obtained for that scale, examine the first three values and obtain the maximum of those neighbors. That maximum value is a leader for that scale.

7 Continue comparing the maximum values to obtain the other leaders for that scale.
8 Move to the next coarser scale and repeat the process.
For example, assume that you have these absolute values of the coefficients at these scales:

6		2		7		5	
4	3	5	2	1	0	4	3

Starting with the top row, which is the next coarsest level from the finest scale (bottom row), compare each value to its dyadic intervals and obtain the maxima.

6		2		7		5	
4	3	5	2	1	0	4	3
	6		5		7		5

Then, look at the three neighboring values and obtain the maximum. Repeat for the next three neighbors. These maxima, 7 and 7, are the wavelet leaders for this level.

References

[1] Wendt, H., and P. Abry. "Multifractality Tests Using Bootstrapped Wavelet Leaders." IEEE Transactions on Signal Processing. Vol. 55, No. 10, 2007, pp. 4811-4820.
[2] Jaffard, S., B. Lashermes, and P. Abry. "Wavelet Leaders in Multifractal Analysis." Wavelet Analysis and Applications. T. Qian, M. I. Vai, and X. Yuesheng, Eds. 2006, pp. 219-264.

See Also

wfbm | wtmm

Introduced in R2016b

dwtmode

Discrete wavelet transform extension mode

Syntax

```
ST = dwtmode
ST = dwtmode('status')
dwtmode('mode')
```


Description

dwtmode sets the signal or image extension mode for discrete wavelet and wavelet packet transforms. The extension modes represent different ways of handling the problem of border distortion in signal and image analysis. For more information, see "Border Effects", in the User's Guide.
dwtmode or dwtmode('status') display the current mode.
ST = dwtmode or ST = dwtmode('status') display and returns in ST the current mode.

ST = dwtmode('status', 'nodisp') returns in ST the current mode and no text (status or warning) is displayed in the MATLAB Command Window.
dwtmode('mode') sets the DWT extension mode according to the value of 'mode':

'mode '	DWT Extension Mode
'sym' or 'symh '	Symmetric-padding (half-point): boundary value symmetric replication - default mode
' symw '	Symmetric-padding (whole-point): boundary value symmetric replication
' asym' or 'asymh '	Antisymmetric-padding (half-point): boundary value antisymmetric replication
' asymw'	Antisymmetric-padding (whole-point): boundary value antisymmetric replication

'mode '	DWT Extension Mode
'zpd '	Zero-padding
'spd ' or 'sp1'	Smooth-padding of order 1 (first derivative interpolation at the edges)
'spO'	Smooth-padding of order 0 (constant extension at the edges)
'ppd '	Periodic-padding (periodic extension at the edges)

For more information on symmetric extension modes see "References".
The DWT associated with these five modes is slightly redundant. But, the IDWT ensures a perfect reconstruction for any of the five previous modes whatever is the extension mode used for DWT.
dwtmode('per') sets the DWT mode to periodization.
This mode produces the smallest length wavelet decomposition. But, the extension mode used for IDWT must be the same to ensure a perfect reconstruction.

Using this mode, dwt and dwt2 produce the same results as the obsolete functions dwtper and dwtper2, respectively.

All functions and Wavelet Analyzer app tools involving the DWT (1-D \& 2-D) or Wavelet Packet transform (1-D \& 2-D) use the specified DWT extension mode.
dwtmode updates a global variable allowing the use of these six signal extensions. The extension mode should only be changed using this function. Avoid changing the global variable directly.

The default mode is loaded from the file DWTMODE. DEF (in the current path) if it exists. If not, the file DWTMODE.CFG (in the toolbox/wavelet/wavelet folder) is used.
dwtmode('save', MODE) saves MODE as the new default mode in the file DWTMODE. DEF (in the current folder). If a file with the same name already exists in the current folder, it is deleted before saving.
dwtmode('save') is equivalent to dwtmode('save', CURRENTMODE).
In these last two cases, the new default mode saved in the file DWTMODE. DEF will be active as default mode in the next MATLAB session.

Examples

```
% If the DWT extension mode global variable does not
% exist, default is Symmetrization.
clear global
dwtmode
** DWT Extension Mode: Symmetrization **
*********************************************
% Display current DWT signal extension mode.
dwtmode
********************************************
** DWT Extension Mode: Symmetrization **
********************************************
% Change to Periodization extension mode.
dwtmode('per')
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! WARNING: Change DWT Extension Mode !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
********************************************
** DWT Extension Mode: Periodization
*******************************************
% Display current DWT signal extension mode.
dwtmode
*******************************************
** DWT Extension Mode: Periodization **
*******************************************
```

Note You should change the extension mode only by using dwtmode. Avoid changing the global variable directly.

References

Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley- Cambridge Press.

See Also
idwt | idwt2 | dwt | dwt2 | wextend
Introduced before R2006a

dyaddown

Dyadic downsampling

Syntax

```
Y = dyaddown(X,EVENODD)
Y = dyaddown(X)
Y = dyaddown(X,EVENODD,'type')
Y = dyaddown(X,'type',EVENODD)
Y = dyaddown(X)
Y = dyaddown(X,'type')
Y = dyaddown(X,0,'type')
Y = dyaddown(X,EVENODD)
Y = dyaddown(X,EVENODD,'c')
```


Description

$Y=$ dyaddown (X, EVENODD) where X is a vector, returns a version of X that has been downsampled by 2. Whether Y contains the even- or odd-indexed samples of X depends on the value of positive integer EVENODD:

- If EVENODD is even, then $Y(k)=X(2 k)$.
- If EVENODD is odd, then $Y(k)=X(2 k+1)$.
$Y=$ dyaddown (X) is equivalent to $Y=$ dyaddown $(X, 0)$ (even-indexed samples).
Y = dyaddown(X,EVENODD, 'type') or Y = dyaddown(X,'type', EVENODD), where X is a matrix, returns a version of X obtained by suppressing one out of two:

Columns of X

$$
\begin{aligned}
& \text { If 'type'= 'c' } \\
& \text { If 'type'= 'r' } \\
& \text { If 'type' }=~ ' m ' ~
\end{aligned}
$$

Rows of X
Rows and columns of X
according to the parameter EVENODD, which is as above.

If you omit the EVENODD or 'type ' arguments, dyaddown defaults to EVENODD $=0$ (even-indexed samples) and 'type' = 'c' (columns).
$\mathrm{Y}=$ dyaddown (X) is equivalent to $\mathrm{Y}=$ dyaddown $\left(\mathrm{X}, 0, \mathrm{C}^{\prime}\right)$.
$Y=$ dyaddown $(X$, type') is equivalent to $Y=$ dyaddown(X,0,'type').
$Y=$ dyaddown (X,EVENODD) is equivalent to $Y=$ dyaddown(X,EVENODD, 'c').

Examples

```
% For a vector.
s = 1:10
s =
    1
dse = dyaddown(s) % Downsample elements with even indices.
dse =
    2 4 6 % 8 10
% or equivalently
dse = dyaddown(s,0)
dse =
    2 4 6 6 8 10
dso = dyaddown(s,1) % Downsample elements with odd indices.
dso =
    1 3 5 7 9
% For a matrix.
s = (1:3)'*(1:4)
S =
    1 2 3 4
    2 4 6 8
    3 6 9 12
dec = dyaddown(s,O,'c') % Downsample columns with even indices.
dec =
    24
    4
    6 12
der = dyaddown(s,1,'r') % Downsample rows with odd indices.
der =
    1 2 3 4
```

```
    3 6 9 12
dem = dyaddown(s,1,'m') % Downsample rows and columns
                        % with odd indices.
dem =
    1 3
    3 
```


References

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

See Also

dyadup

Introduced before R2006a

dyadup

Dyadic upsampling

Syntax

```
Y = dyadup(X,EVENODD)
Y = dyadup(X)
Y = dyadup(X,EVENODD,'type')
Y = dyadup(X,'type',EVENODD)
Y = dyadup(X)
Y = dyaddown(X,1,'c')
Y = dyadup(X,'type')
Y = dyadup(X,1,'type')
Y = dyadup (X,EVENODD)
Y = dyadup(X,EVENODD,'c')
```


Description

dyadup implements a simple zero-padding scheme very useful in the wavelet reconstruction algorithm.
$Y=$ dyadup (X, EVENODD), where X is a vector, returns an extended copy of vector X obtained by inserting zeros. Whether the zeros are inserted as even- or odd-indexed elements of Y depends on the value of positive integer EVENODD:

- If EVENODD is even, then $\mathrm{Y}(2 \mathrm{k}-1)=\mathrm{X}(\mathrm{k}), \mathrm{Y}(2 \mathrm{k})=0$.
- If EVENODD is odd, then $\mathrm{Y}(2 \mathrm{k}-1)=0, \mathrm{Y}(2 \mathrm{k})=\mathrm{X}(\mathrm{k})$.
$Y=$ dyadup (X) is equivalent to $Y=$ dyadup $(X, 1)$ (odd-indexed samples).
Y = dyadup(X,EVENODD,'type') or Y = dyadup(X,'type',EVENODD), where X is a matrix, returns extended copies of X obtained by inserting

Columns in X	If 'type ' $=$ ' c^{\prime}
Rows in X	If 'type $=$ ' r '

Rows and columns in X	If 'type ' $=$ ' m '

according to the parameter EVENODD, which is as above.
If you omit the EVENODD or 'type' arguments, dyadup defaults to EVENODD = 1 (zeros in odd-indexed positions) and 'type' = 'c' (insert columns).
$Y=$ dyadup (X) is equivalent to $Y=$ dyaddown $\left(X, 1,{ }^{\prime} c^{\prime}\right)$.
$Y=$ dyadup (X,'type') is equivalent to $Y=$ dyadup ($X, 1$,'type').
$Y=$ dyadup $(X, E V E N O D D)$ is equivalent to $Y=\operatorname{dyadup}\left(X, E V E N O D D,{ }^{\prime} \mathrm{c}^{\prime}\right)$.

Examples

```
% For a vector.
s = 1:5
s =
    12345
dse = dyadup(s) % Upsample elements at odd indices.
dse =
    0 1020304050
% or equivalently
dse = dyadup(s,1)
dse =
    0 1020 3 0 4 0 5 0
dso = dyadup(s,0) % Upsample elements at even indices.
dso =
    102030405
% For a matrix.
s = (1:2)'*(1:3)
s =
    123
    246
der = dyadup(s,1,'r') % Upsample rows at even indices.
der =
    0 0
    123
```

```
    00
    246
    00
doc = dyadup(s,O,'c') % Upsample columns at odd indices.
doc =
    10203
    2 0 4 0 6
dem = dyadup(s,1,'m') % Upsample rows and columns
                                    % at even indices.
dem =
\begin{tabular}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 4 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
% Using default values for dyadup and dyaddown, we have:
% dyaddown(dyadup(s)) = s.
s = 1:5
s =
    12345
uds = dyaddown(dyadup(s))
uds =
    12345
% In general reversed identity is false.
```


References

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

See Also
dyaddown

Introduced before R2006a

entrupd

Entropy update (wavelet packet)

Syntax

```
T = entrupd(T,ENT)
T = entrupd(T,ENT,PAR)
```


Description

entrupd is a one- or two-dimensional wavelet packet utility.
$\mathrm{T}=$ entrupd $(T, E N T)$ or $\mathrm{T}=$ entrupd $(T, E N T, P A R)$ returns for a given wavelet packet tree T, the updated tree using the entropy function $E N T$ with the optional parameter PAR (see wenergy for more information).

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp; x = noisdopp;
% Decompose x at depth 2 with db1 wavelet packets
% using shannon entropy.
t = wpdec(x,2,'db1','shannon');
% Read entropy of all the nodes.
nodes = allnodes(t);
ent = read(t,'ent',nodes);
ent'
ent =
    1.0e+04 *
    -5.8615 -6.8204 -0.0350 -7.7901 -0.0497-0.0205 -0.0138
% Update nodes entropy.
t = entrupd(t,'threshold',0.5);
```

```
nent = read(t,'ent');
nent'
nent =
    937 488 320 241 175 170 163
```


See Also

wenergy | wpdec | wpdec2

Introduced before R2006a

fbspwavf

Complex frequency B-spline wavelet

Syntax

$[P S I, X]=$ fbspwavf(LB, UB, $N, M, F B, F C)$

Description

$[P S I, X]=$ fbspwavf(LB, UB, $N, M, F B, F C)$ returns values of the complex frequency B-Spline wavelet defined by the order parameter M (M is an integer such that $1 \leq M$), a bandwidth parameter FB, and a wavelet center frequency FC.

The function PSI is computed using the explicit expression

```
PSI(X) = (FB^0.5)*((sinc(FB*X/M).^M).*exp(2*i*pi*FC*X))
```

on an N point regular grid in the interval [LB , UB].
$F B$ and $F C$ must be such that $F C>0$ and $>F B>0$.
Output arguments are the wavelet function PSI computed on the grid X.

Examples

```
% Set order, bandwidth and center frequency parameters.
m = 2; fb = 0.5; fc = 1;
% Set effective support and grid parameters.
lb = -20; ub = 20; n = 1000;
% Compute complex Frequency B-Spline wavelet fbsp2-0.5-1.
[psi,x] = fbspwavf(lb,ub,n,m,fb,fc);
% Plot complex Frequency B-Spline wavelet.
subplot(211)
plot(x,real(psi))
```

```
title('Complex Frequency B-Spline wavelet fbsp2-0.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
```


References

Teolis, A. (1998), Computational signal processing with wavelets, Birkhauser, p. 63.

See Also

waveinfo

Introduced before R2006a

filt2ls

Transform quadruplet of filters to lifting scheme

Syntax

```
LS = filt2ls(LoD,HiD,LoR,HiR)
```


Description

LS = filt2ls(LoD,HiD, LoR, HiR) returns the lifting scheme LS associated with the four input filters LoD, HiD, LoR, and HiR that verify the perfect reconstruction condition.

Examples

```
[LoD,HiD,LoR,HiR] = wfilters('db2')
```

LoD =
$\begin{array}{llll}-0.1294 & 0.2241 & 0.8365 & 0.4830\end{array}$
HiD =
$\begin{array}{llll}-0.4830 & 0.8365 & -0.2241 & -0.1294\end{array}$
LoR $=$
$\begin{array}{llll}0.4830 & 0.8365 & 0.2241 & -0.1294\end{array}$
HiR =
$\begin{array}{llll}-0.1294 & -0.2241 & 0.8365 & -0.4830\end{array}$
LS = filt2ls(LoD,HiD,LoR,HiR);
displs(LS);
LS $=\{.$.
'd' [-1.73205081]
[0]

```
'p' 
LSref = liftwave('db2');
displs(LSref);
LSref = {...
\begin{tabular}{|c|c|c|c|}
\hline 'd' & -1.73205081] & & [0] \\
\hline 'p' & [ -0.06698730 & 0.43301270 ] & [1] \\
\hline 'd' & [1.00000000] & & [-1] \\
\hline 1.93185165] & [ 0.51763809] & & [] \\
\hline
\end{tabular}
```

See Also
ls2filt|lsinfo

Introduced before R2006a

fejerkorovkin

Fejer-Korovkin wavelet filters

Syntax

Lo = fejerkorovkin(wname)

Description

Lo = fejerkorovkin(wname) returns the Fejer-Korovkin scaling filter specified by wname. Valid entries for wname are 'fk4', 'fk6', 'fk8', 'fk14', 'fk18', and 'fk22'. For information on the Fejer-Korovkin filters, see Nielson[1].

Examples

Fejer-Korovkin Filters

Construct and plot the Fejer-Korovkin (14) scaling function and wavelet.
Obtain the Fejer-Korovkin scaling filter and display its 14 coefficients.
Lo = fejerkorovkin('fk14')

Lo =
Columns 1 through 7
$\begin{array}{lllllll}0.2604 & 0.6869 & 0.6116 & 0.0514 & -0.2456 & -0.0486 & 0.1243\end{array}$
Columns 8 through 14
$\begin{array}{lllllll}0.0222 & -0.0640 & -0.0051 & 0.0298 & -0.0033 & -0.0093 & 0.0035\end{array}$

Use the scaling filter to obtain the wavelet filter and display its wavelet filter coefficients.

```
Hi = qmf(Lo)
Hi =
    Columns 1 through 7
        0.0035 0.0093 -0.0033 -0.0298 -0.0051 0.0640 0.0222
    Columns 8 through 14
    -0.1243 -0.0486 0.2456 0.0514 -0.6116 0.6869 -0.2604
```

wavefun provides an efficient way to construct and plot the scaling function and wavelet.
[phi,psi,xval] = wavefun('fk14');
subplot $(2,1,1)$
plot(xval,phi)
title('Scaling Function')
subplot(2,1,2)
plot(xval,psi)
title('Wavelet')

Input Arguments

wname - Filter name

'fk4' | 'fk6' | 'fk8' | 'fk14' | 'fk18' | 'fk22'
Filter name, specified as a character vector. The numeric value in each name is the number of Fejer-Korovkin filter coefficients.

Output Arguments

Lo - Scaling filter
vector
Scaling filter, returned as a vector.

References

[1] Nielsen, M. "On the construction and frequency localization of finite orthogonal quadrature filters." Journal of Approximation Theory. Vol. 108, pp. 36-52.

See Also
coifwavf | dbwavf | symwavf
Introduced in R2015b

gauswavf

Gaussian wavelet

Syntax

[PSI, X] = gauswavf(LB, UB, N)
$[P S I, X]=$ gauswavf(LB, UB, N, P)
[PSI, X] = gauswavf(LB,UB,N,WAVNAME)

Description

$[P S I, X]=$ gauswavf($\mathrm{LB}, \mathrm{UB}, \mathrm{N}$) returns the $1^{\text {st }}$ order derivative of the Gaussian wavelet, PSI, on an N-point regular grid, X, for the interval [LB, UB]. The effective support of the Gaussian wavelets is [-5 5].
$[P S I, X]=$ gauswavf $(L B, U B, N, P)$ returns the $P^{\text {th }}$ derivative. Valid values of P are integers from 1 to 8 .

The Gaussian function is defined as $C_{p} e^{-x^{2}} . C_{p}$ is such that the 2-norm of the $\mathrm{P}^{\text {th }}$ derivative of PSI is equal to 1 .
[PSI, X] = gauswavf(LB, UB, N, WAVNAME) uses the valid wavelet family short name WAVNAME plus the order of the derivative in a character vector, such as 'gaus4'. To see valid character vectors for Gaussian wavelets, use waveinfo('gaus') or use wavemngr ('read', 1) and refer to the Gaussian section.

Note: For visualizing the second or third order derivative of Gaussian wavelets, the convention is to use the negative of the normalized derivative. In the case of the second derivative, scaling by -1 produces a wavelet with its main lobe in the positive y direction. This scaling also makes the Gaussian wavelet resemble the Mexican hat, or Ricker, wavelet. The validity of the wavelet is not affected by the -1 scaling factor.

Examples

\% Set effective support and grid parameters. lb $=-5 ; u b=5 ; n=1000$;
\% Compute Gaussian wavelet of order 8. [psi,x] = gauswavf(lb,ub,n,8);
\% Plot Gaussian wavelet of order 8. plot(x,psi), title('Gaussian wavelet of order 8'), grid

See Also

waveinfo

Introduced before R2006a

get

WPTREE contents

Syntax

```
[FieldValue1,FieldValue2, ...] =
get(T,'FieldName1','FieldName2', ...)
[FieldValue1,FieldValue2, ...] = get(T)
```


Description

[FieldValue1,FieldValue2, ...] = get (T, 'FieldName1', 'FieldName2', ...) returns the content of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can get the subfield contents, giving the name of these subfields as 'FieldName' values. (See "Examples" below.)
[FieldValue1,FieldValue2, ...] $=\operatorname{get}(T)$ returns all the field contents of the tree T.

The valid choices for 'FieldName ' are

'dtree'	DTREE parent object
'wavInfo'	Structure (wavelet information)

The fields of the wavelet information structure, 'wavinfo', are also valid for 'FieldName':

'wavName'	Wavelet name
'Lo_D'	Low Decomposition filter
'Hi_D'	High Decomposition filter
'Lo_R'	Low Reconstruction filter
'Hi_R'	High Reconstruction filter

'entInfo'	Structure (entropy information)

The fields of the entropy information structure, 'entInfo', are also valid for
'FieldName':

'entName'	Entropy name
'entPar'	Entropy parameter

Or fields of DTREE parent object:

' n ntree '	NTREE parent object
'allNI '	All nodes information
'terNI '	Terminal nodes information

Or fields of NTREE parent object:

'wtbo '	WTBO parent object
' order'	Order of the tree
'depth '	Depth of the tree
'spsch'	Split scheme for nodes
'tn'	Array of terminal nodes of the tree

Or fields of WTBO parent object:

'wtboInfo'	Object information
'ud'	Userdata field

Examples

```
% Compute a wavelet packets tree
x = rand(1,1000);
t = wpdec(x,2,'db2');
o = get(t,'order');
[o,tn] = get(t,'order','tn');
[o,allNI,tn] = get(t,'order','allNI','tn');
[o,wavInfo,allNI,tn] = get(t,'order','wavInfo','allNI','tn');
```

```
[o,tn,Lo_D,EntName] = get(t,'order','tn','Lo_D','EntName');
[wo,nt,dt] = get(t,'wtbo','ntree','dtree');
```


See Also

disp | read | set | write

Introduced before R2006a

haart

Haar 1-D wavelet transform

Syntax

```
[a,d] = haart(x)
[a,d] = haart(x,level)
[a,d] = haart( ___,integerflag)
```


Description

[a,d] = haart(x) returns the approximation coefficients, a, and detail coefficients, d, of a 1-D Haar discrete wavelet transform. The input x can be univariate or multivariate data. The default level depends on the length of x.
[a,d] = haart(x,level) obtains the Haar transform down to the specified level.
[a,d] = haart(\qquad , integerflag) specifies how the Haar transform handles integer-valued data, using any the previous syntaxes.

Examples

Haar Transform of ECG Data

Obtain the Haar transform down to the default maximum level.

```
load wecg;
[a,d] = haart(wecg);
```


Haar Transform of Electricity Consumption Data Down to Specified Level

Obtain the Haar transform of a multivariate time series dataset of electricity consumption data down to level 4 . The signals data is transposed so that each time series is in a column, rather than a row.

```
load elec35_nor;
signals = signals';
```

$$
[a, d]=\text { haart(signals,4); }
$$

Haar Transform of Integer Data Series

Obtain the Haar transform and inverse Haar transform of ECG heart rate data. The data is made up of integers only.

Load and plot the ECG data.
load BabyECGData;
plot(times,HR)
xlabel('Hours')
ylabel('Heart Rate')
title('ECG Data')

ECG Data

Obtain the Haar transform. Then, obtain the inverse Haar transform approximated at level 5 . The scale for this level is 512 seconds, which is 2^{5} times the sampling interval (16 seconds).

```
[a,d] = haart(HR,'integer');
HaarHR = ihaart(a,d,5,'integer');
```

Compare the reconstructed data to the original data.
figure;
plot(times, HaarHR)
xlabel('Hours')
ylabel('Heart Rate')
title('Haar Approximation of Heart Rate')

- "Haar Transforms for Time Series Data and Images"

Input Arguments

x - Input signal

vector of real values | matrix of real values
Input signal, specified as vector or matrix of real values. If x is a vector, it must be even length. If x is a matrix, each column must be even length, and haart operates on each column of x.

level - Maximum level
 positive integer

Maximum level to which to perform the Haar transform, specified as a positive integer. The default value depends on the length of the input signal, x.

- If the length of x is a power of two, the Haar transform is obtained down to level log2(length(x)).
- If the length of x is even, but not a power of two, the Haar transform is obtained down to level floor(log2(length(x)/2)).

If level is 1 , the detail coefficients, d , are returned as a vector or matrix, depending on whether the input is a vector or matrix, respectively.

integerflag - Integer-valued data handling

'noninteger' (default) | 'integer'
Integer-valued data handling, specified as a character vector. 'noninteger' does not preserve integer-valued data in the Haar transform, and 'integer' preserves it. The 'integer' option applies only if all elements of the input, x, are integers. For integer-valued input, haart returns integer-valued wavelet coefficients. For both 'noninteger' and 'integer', however, the Haar transform algorithm uses floatingpoint arithmetic. The data type of outputs a and d, is always double.

Output Arguments

a - Approximation coefficients
 scalar | vector | matrix

Approximation coefficients, returned as a scalar, vector, or matrix of coefficients, depending on the level to which the transform is calculated. Approximation, or scaling, coefficients are a lowpass representation of the input. At each level, the approximation coefficients are divided into coarser approximation and detail coefficients.

Data Types: double

d - Detail coefficients
 scalar | vector | matrix | cell array

Detail coefficients, returned as a scalar, vector, matrix, or cell array. Detail coefficients are generally referred to as the wavelet coefficients and are a highpass representation of
the input. The number of detail coefficients depends on the selected level and the length of the input. The order of the elements of d is from fine to coarse resolution levels. The coarsest resolution level element of the d cell array is a scalar value. If you specify only two levels, the detail coefficient is a scalar.

Data Types: double

See Also
haart2|ihaart|ihaart2

Introduced in R2016b

haart2

2-D Haar wavelet transform

Syntax

```
[a,h,v,d] = haart2(x)
[a,h,v,d] = haart2(x,level)
[a,h,v,d] = haart2(___,integerflag)
```


Description

[a,h, v, d] = haart2(x) performs the 2-D Haar discrete wavelet transform (DWT) of the matrix, x. haart2 returns the approximation coefficients, a, at the coarsest level. haart2 also returns cell arrays of matrices containing the horizontal, vertical, and diagonal detail coefficients by level. If the 2-D Haar transform is computed only at one level coarser in resolution, then h, v, and d are matrices. The default level depends on the number of rows of x.
[a,h,v,d] = haart2(x,level) performs the 2-D Haar transform down to the specified level.
[a,h,v,d] = haart2(__ , integerflag) specifies how the 2-D Haar transform handles integer-valued data, using any of the previous syntaxes.

Examples

Haar Transform and First Level Details of 2-D Data

Obtain the 2-D Haar transform of 2-D data and plot its diagonal and horizontal level 1 details.
figure
[a,h,v,d] = haart2(xbox);

Original Image

subplot (2,1,1)
imagesc(d\{1\})
title('Diagonal Level 1 Details');

[^2]

Haar Transform of Image Down to a Specified Level

Show the effect of limiting the maximum level of the 2-D Haar transform on an image.
Load and display the image of a cameraman.

```
im = imread('cameraman.tif');
imagesc(im)
```


Obtain the 2-D Haar transform to level 2 and view the level 2 approximation.
[a2,h2, v2, d2] = haart2(im,2);
imagesc(a2)

Haar Transform Using Integer Image Data

Compare 2-D Haar transform results using the default 'noninteger' flag and the 'integer' flag. The cameraman image is uint8 data, so its maximum value is 255 .

Obtain the default Haar transform. The approximation detail coefficient is outside the range 0 to 255 .

```
im = imread('cameraman.tif');
[a,h,v,d] = haart2(im);
a
a =
```


$3.0393 \mathrm{e}+04$

Obtain the Haar transform, limiting it to integer values. The approximation detail is an integer and is within the range of the original image data.
[a,h,v,d] = haart2(im,'integer');
a
a $=$
119

- "Haar Transforms for Time Series Data and Images"

Input Arguments

x - Input signal
matrix of real values
Input signal, specified as a 2-D or 3-D matrix of real values. If x is 3-D, the third dimension of x must equal 3 . The row and column sizes of x must be even length.

level - Maximum level

positive integer
Maximum level to which to perform the 2-D Haar transform, specified as a positive integer. The default value depends on the length of the input signal, x.

- If both the row and column sizes of x are powers of two, the 2-D Haar transform is obtained down to level log2(min(size (x))).
- If both the row and column sizes of x are even, but at least one is not a power of two, level is equal to floor $(\log 2(\min (\operatorname{size}(x) / 2)))$.

If level is greater than 1 , then h, v, and d are cell arrays. If level is equal to 1 , then h , v , and d are matrices.

integerflag - Integer-valued data handling

'noninteger' (default) | 'integer'

Integer-valued data handling, specified as a character vector. 'noninteger' does not preserve integer-valued data in the 2-DHaar transform, and 'integer' preserves it. The 'integer' option applies only if all elements of the input, \mathbf{x}, are integers. For integer-valued input, haart2 returns integer-valued wavelet coefficients. For both 'noninteger' and 'integer', however, the 2-D Haar transform algorithm uses floating-point arithmetic. The data type of outputs a, h, v, and d, is always double.

Output Arguments

a - Approximation coefficients

scalar | matrix

Approximation coefficients, returned as a scalar or matrix of coefficients, depending on the level to which the transform is calculated. Approximation, or scaling, coefficients are a lowpass representation of the input. At each level, the approximation coefficients are divided into coarser approximation and detail coefficients.

Data Types: double

h - Horizontal detail coefficients

matrix | cell array
Horizontal detail coefficients by level, returned as a matrix or cell array of matrices. If level is greater than $1, \mathrm{~h}$ is a cell array. If level is equal to 1 , the 2 -D Haar transform is computed at only one level coarser in resolution and h is a matrix.

Data Types: double
v - Vertical detail coefficients
matrix | cell array
Vertical detail coefficients by level, returned as a matrix or cell array of matrices. If level is greater than $1, v$ is a cell array. If level is equal to 1 , the $2-\mathrm{D}$ Haar transform is computed at only one level coarser in resolution and v is a matrix.

Data Types: double
d - Diagonal detail coefficients
matrix | cell array

Diagonal detail coefficients by level, returned as a matrix or cell array of matrices. If level is greater than $1, \mathrm{~d}$ is a cell array. If level is equal to 1 , the 2 -D Haar transform is computed at only one level coarser in resolution and d is a matrix.

Data Types: double

See Also

haart | ihaart | ihaart2

Introduced in R2016b

icwt

Inverse continuous 1-D wavelet transform

Syntax

```
xrec = icwt(wt)
xrec = icwt(wt,wname)
xrec = icwt(wt,f,freqrange)
xrec = icwt(wt,period,periodrange)
xrec = icwt( ___,Name,Value)
```


Description

xrec = icwt(wt) inverts the continuous wavelet transform (CWT) coefficient matrix wt using default values. icwt assumes that you obtained the CWT using cwt with the default Morse wavelet. This wavelet has a symmetry of 3 and a time bandwidth of 60 . icwt also assumes that the CWT uses default scales.
xrec = icwt (wt, wname) uses the analytic wavelet wname to invert the CWT. The specified wavelet must be the same as the wavelet used in cwt. Valid options for wname are 'morse', 'amor', and 'bump', which specify the Morse, Morlet, and bump wavelet, respectively.
xrec $=$ icwt (wt,f,freqrange) inverts the CWT over the two-element frequency range specified in freqrange. f is the scale-to-frequency conversion obtained from cwt. The frequency range must be increasing and contained in f.
xrec = icwt(wt,period, periodrange) inverts the CWT over the two-element range of periods in periodrange. The period is the cwt output obtained using a duration input. The period range must be increasing and contained in period.
xrec = icwt(__, Name, Value) returns the inverse CWT with additional options specified by one or more Name, Value pair arguments.

Examples

Inverse Continuous Wavelet Transform of Speech Signal

Obtain the CWT of a speech sample and invert the CWT using the default analytic Morse wavelet.

```
load mtlb;
wt = cwt(mtlb);
xrec = icwt(wt);
```


Inverse Continuous Wavelet Transform Using Specified Wavelet

Obtain the continuous wavelet transform of a speech sample and reconstruct the sample using the bump wavelet instead of the default Morse wavelet.

```
load mtlb;
dt = 1/Fs;
t = 0:dt:numel(mtlb)*dt-dt;
```

Obtain and plot the CWT.

```
[bumpmtlb,f] = cwt(mtlb,Fs,'bump');
p1 = pcolor(t,f,abs(bumpmtlb));
p1.EdgeColor = 'none';
xlabel('Seconds');
ylabel('Hz');
```


Obtain the inverse CWT.

```
xrec = icwt(bumpmtlb,'bump','SignalMean',mean(mtlb));
```

Plot the original and reconstructed signals.

```
plot(t,mtlb);
xlabel('Seconds');
ylabel('Amplitude');
hold on;
plot(t,xrec,'r');
legend('Original','Reconstruction');
```


Play and compare the original and reconstructed signals.
$\mathrm{p}=$ audioplayer(mtlb,Fs);
play(p);
pause(2);
px = audioplayer(xrec,Fs);
play(px);

Reconstruct Frequency-Localized Data

Reconstruct a frequency-localized approximation to the Kobe earthquake data by extracting information from the CWT. The extracted information corresponds to frequencies in the range [0.030 0.070] Hz.
load kobe;
Obtain the CWT. Then, obtain the inverse CWT and add the signal mean back into the reconstructed data. The CWT does not preserve the signal mean.
[wt,f] = cwt(kobe, 1);

```
xrec = icwt(wt,f,[0.030 0.070],'SignalMean',mean(kobe));
```

Plot the original and reconstructed data.

```
subplot(211)
plot(kobe);
grid on
title('Original Data');
ylabel('Amplitude')
subplot(212)
plot(xrec);
grid on
title('Bandpass Filtered Reconstruction [0.030 0.070] Hz');
xlabel('Frequency');
ylabel('Amplitude');
```


Reconstruct Data from Specific Time Period

Use the inverse continuous wavelet transform to reconstruct an approximation to El Nino data based on 2 to 8 year periods.

Load the El Nino data and obtain its CWT. The data is sampled monthly. To obtain the periods in years, specify the sampling interval as $1 / 12$ of a year.

```
load ninoairdata;
[cfs,period] = cwt(nino,years(1/12));
```

Obtain the inverse CWT for periods of 2 to 8 years.
xrec $=$ icwt(cfs,period,[years(2) years(8)]);

Plot the CWT of the reconstructed data and compare it to the CWT of the original data.
cwt(nino,years(1/12)); title('Original Data');
figure;
cwt(xrec,years(1/12)); title('Approximation Based on 2-8 Year Periods');

Compare the original data with the reconstructed data in time.
figure;
subplot(211)
plot(datayear, nino);
grid on;
ax = gca;
ax.XTickLabel = '';
axis tight;
title('Original Data');
subplot(212)
plot(datayear, xrec);
grid on;

```
axis tight;
xlabel('Year');
title('El Nino Data - 2-8 Year Periods');
```

Original Data

El Nino Data - 2-8 Year Periods

Input Arguments

wt - Continuous wavelet transform coefficients

matrix
Continuous wavelet transform coefficients, specified as a matrix of complex values. wt is the output from the cwt function.

Data Types: double

Complex Number Support: Yes

wname - Analytic wavelet

'morse' (default) | 'amor' | 'bump'

Analytic wavelet used to invert the CWT, specified as 'morse', 'amor', or 'bump'. These character vectors specify the analytic Morse, Morlet, or bump wavelet, respectively. The specified wavelet must be the same type of wavelet used to obtain the cwt.

The default Morse wavelet uses a default symmetry parameter, γ, that is 3 and has a default time bandwidth of 60 .

$f-$ CWT frequencies

vector
CWT frequencies, specified as a vector. The number of elements in the frequency vector must equal to the number of rows in the input CWT coefficient matrix, wt. If you specify f, you must also specify freqrange.

freqrange - Frequency range

two-element vector
Frequency range for which to return inverse continuous wavelet transform values, specified as a two-element vector. The freqrange values must be in the range of the frequency values in f. The first and second elements of freqrange define the start and end of the frequency range, respectively. The first element must be less than the second element. If you specify freqrange, you must also specify f.

period - Time periods

vector
Time periods corresponding to the rows of CWT coefficient matrix wt, specified as a vector. period is the output of cwt, when the CWT is obtained using a duration input.

periodrange - Period range

(default) | two-element vector
Period range for which to return inverse continuous wavelet transform values, specified as a two-element vector. The periodrange values must be in the range of the period values in period. The first and second elements of periodrange define the start and
end of the frequency range, respectively. The first element must be less than the second element. If you specify periodrange, you must also specify period.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: 'TimeBandwidth' , 45 sets the time bandwidth to 45 .
'TimeBandwidth ' - Time-bandwidth of Morse wavelet 60 (default) | scalar greater than 3 and less than or equal to 120

Time bandwidth of the Morse wavelet, specified as a comma-separated pair consisting of 'TimeBandwidth' and a scalar greater than 3 and less than or equal to 120. The specified time bandwidth must be the same as the time bandwidth used in the cwt. The symmetry of the Morse wavelet is assumed to be 3 .

You cannot specify both the 'TimeBandwidth' and 'WaveletParameters'. If you specify 'TimeBandwidth', you cannot specify 'WaveletParameters'. To specify both the symmetry and time bandwidth, use 'WaveletParameters' instead.

'WaveletParameters ' - Symmetry and time bandwidth of Morse wavelet $(3,60)$ (default) | two-element vector of scalars

Symmetry and time bandwidth of Morse wavelet, specified as the comma-separated pair consisting of 'WaveletParameters' and a two-element vector of scalars. The first element of the vector is the symmetry, γ, and the second element is the time-bandwidth. The specified wavelet parameters must be the same as the parameters used in cwt.

You cannot specify both 'WaveletParameters' and 'TimeBandwidth '. If you specify 'WaveletParameters', you cannot specify 'TimeBandwidth'. To specify the time bandwidth and use the default symmetry value of 3 , use 'TimeBandwidth' instead.

'SignalMean' - Signal mean
 scalar

Signal mean to add to the iwct output, specified as the comma-separated pair consisting of 'SignalMean' and a scalar. Because cwt does not preserve the signal mean, icwt does not contain the signal mean by default.

' VoicesPerOctave' - Number of voices per octave
 10 (default) | even integer from 4 to 48

Number of voices per octave, specified as the comma-separated pair consisting of 'VoicesPerOctave' and an even integer from 4 to 48. The CWT scales are discretized using the specified number of voices per octave. The number of voices per octave must be the same as the number of voices per octave used to obtain the CWT. You cannot specify the number of voices per octave if you specify either the frequency, f, or duration, period.

Output Arguments

xrec - Inverse 1-D continuous wavelet transform

row vector
Inverse 1-D continuous wavelet transform, returned as a row vector.
Data Types: double

More About

- "Morse Wavelets"
- "Continuous and Discrete Wavelet Transforms"
- "1-D Continuous Wavelet Analysis"
- "Time-Frequency Analysis with the Continuous Wavelet Transform"

References

[1] Lilly, J. M., and S. C. Olhede. "Generalized Morse Wavelets as a Superfamily of Analytic Wavelets." IEEE Transactions on Signal Processing. Vol. 60, No. 11, 2012, pp. 6036-6041.
[2] Lilly, J. M., and S. C. Olhede. "Higher-Order Properties of Analytic Wavelets." IEEE Transactions on Signal Processing. Vol. 57, No. 1, 2009, pp. 146-160.
[3] Lilly, J. M. jLab: A data analysis package for Matlab, version 1.6.2. 2016. http:// www.jmlilly.net/jmlsoft.html.

See Also

cwt | duration | dwt | wavedec | wavefun | waveinfo | wcodemat | wcoherence | wsst

Introduced in R2016b

icwift

Inverse CWT

Compatibility

This function is no longer recommended. Use icwt instead.

Syntax

```
xrec = icwtft(cwtstruct)
xrec = icwtft(cwtstruct,'plot')
xrec = icwtft(cwtstruct,'signal',SIG,'plot')
```


Description

xrec $=$ icwtft(cwtstruct) returns the inverse continuous wavelet transform of the CWT coefficients contained in the cfs field of the structure array cwtstruct. Obtain the structure array cwtstruct as the output of cwtft.
xrec $=$ icwtft(cwtstruct, 'plot') plots the reconstructed signal.
x rec $=$ icwtft(cwtstruct,'signal',SIG,'plot') places a radio button in the bottom left corner of the plot. Enabling the radio button superimposes the plot of the input signal SIG on the plot of the reconstructed signal. By default the radio button is not enabled and only the reconstructed signal is plotted.

Input Arguments

cwtstruct

Structure array containing six fields.

- cfs - CWT coefficient matrix
- scales - Vector of scales
- frequencies - frequencies in cycles per unit time (or space) corresponding to the scales. If the sampling period units are seconds, the frequencies are in hertz. The elements of frequencies are in decreasing order to correspond to the elements in the scales vector.
- omega - Angular frequencies used in the Fourier transform
- meanSig - Mean of the analyzed signal
- dt - The sampling period
- wav - Analyzing wavelet used in the CWT with parameters specified
cwtstruct is the output of cwtft.

Output Arguments

xrec

Reconstructed signal

Examples

Compute the CWT and inverse CWT of two sinusoids with disjoint support.

```
N = 1024;
t = linspace(0,1,N);
y = sin(2*pi*8*t).*(t<=0.5)+sin(2*pi*16*t).*(t>0.5);
dt = 0.05;
s0 = 2*dt;
ds = 0.4875;
NbSc = 20;
wname = 'morl';
sig = {y,dt};
sca = {sO,ds,NbSc};
wave = {wname,[]};
cwtsig = cwtft(sig,'scales',sca,'wavelet',wave);
% Compute inverse CWT and plot reconstructed signal with original
sigrec = icwtft(cwtsig,'signal',sig,'plot');
```

Select the radio button in the bottom left corner of the plot.

Use the inverse CWT to approximate a trend in a time series. Construct a time series consisting of a polynomial trend, a sinewave (oscillatory component), and additive white Gaussian noise. Obtain the CWT of the input signal and use the inverse CWT based on only the coarsest scales to reconstruct an approximation to the trend. To obtain an accurate approximation based on select scales use the default power of two spacing for the scales in the continuous wavelet transform. See cwtft for details.

```
t = linspace(0,1,1e3);
% Polynomial trend
x = t.^3-t.^2;
% Periodic term
x1 = 0.25* cos(2*pi*250*t);
% Reset random number generator for reproducible results
rng default
y = x+x1+0.1*randn(size(t));
% Obtain CWT of input time series
cwty = cwtft({y,0.001},'wavelet','morl');
% Zero out all but the coarsest scale CWT coefficients
cwty.cfs(1:16,:) = 0;
% Reconstruct a signal approximation based on the coarsest scales
xrec = icwtft(cwty);
plot(t,y,'k'); hold on;
xlabel('Seconds'); ylabel('Amplitude');
```

```
plot(t,x,'b','linewidth',2);
plot(t,xrec,'r','linewidth',2);
legend('Original Signal','Polynomial Trend',...
    'Inverse CWT Approximation');
figure
plot(t,x,'b'); hold on;
xlabel('Seconds'); ylabel('Amplitude');
plot(t,xrec,'r','linewidth',2);
legend('Polynomial Trend','Inverse CWT Approximation');
```


You can also use the following syntax to plot the approximation. Select the radio button to view the original polynomial trend superimposed on the wavelet approximation.

```
% Input the polynomial trend as the value of 'signal'
xrec = icwtft(cwty,'signal',x,'plot');
```


More About

Inverse CWT

icwtft computes the inverse CWT based on a discretized version of the single integral formula due to Morlet. The Wavelet Toolbox Getting Started Guide contains a brief description of the theoretical foundation for the single integral formula in "Inverse Continuous Wavelet Transform". The discretized version of this integral is presented in [5]

- "Continuous and Discrete Wavelet Transforms"
- "Continuous Wavelet Transform and Scale-Based Analysis"
- "Inverse Continuous Wavelet Transform"

References

[1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
[2] Farge, M. "Wavelet Transforms and Their Application to Turbulence", Ann. Rev. Fluid. Mech., 1992, 24, 395-457.
[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
[4] Sun,W. "Convergence of Morlet's Reconstruction Formula", preprint, 2010.
[5] Torrence, C. and G.P. Compo "A Practical Guide to Wavelet Analysis", Bull. Am. Meteorol. Soc., 79, 61-78, 1998.

See Also

cwt \| cwtft | icwtlin

Introduced in R2011a

icwtlin

Inverse continuous wavelet transform (CWT) for linearly spaced scales

Compatibility

This function is no longer recommended. Use icwt instead.

Syntax

```
xrec = icwtlin(cwtstruct)
xrec = icwtlin(wav,meanSIG,cfs,scales,dt)
xrec = icwtin(...,'plot')
xrec = icwtlin (...,'signal',SIG,'plot')
xrec = icwtlin(...,Name,Value)
```


Description

xrec $=$ icwtlin(cwtstruct) returns the inverse continuous wavelet transform (CWT) of the CWT coefficients obtained at linearly spaced scales.

Note: To use icwtlin you must:

- Use linearly-spaced scales in the CWT. icwtlin does not verify that the scales are linearly-spaced.
- Use one of the supported wavelets. See "Input Arguments" on page 1-277 for a list of supported wavelets.
xrec = icwtlin(wav, meanSIG, cfs, scales, $d t$) returns the inverse CWT of the coefficients in cfs. The inverse CWT is obtained using the wavelet wav, the linearly spaced scales scales, the sampling period dt , and the mean signal value meanSig.
xrec $=$ icwtin(...,'plot') plots the reconstructed signal xrec along with the CWT coefficients and CWT moduli. If the analyzing wavelet is complex-valued, the plot includes the real and imaginary parts of the CWT coefficients.
xrec $=$ icwtlin (...,'signal',SIG,'plot') places a radio button in the bottomleft corner of the plot. Enabling the radio button superimposes the plot of the input signal SIG on the plot of the reconstructed signal. SIG can be a structure array, a cell array, or a vector. If SIG is a structure array, there must be two fields: val and period. The val field contains the signal and the period field contains the sampling period. If SIG is a cell array, SIG $\{1\}$ contains the signal and SIG $\{2\}$ is the sampling period.
xrec $=$ icwtlin(..., Name, Value) returns the inverse CWT transform with additional options specified by one or more Name, Value pair arguments.

Input Arguments

cwtstruct

A structure array that is the output of cwtft or constructed from the output of cwt. If you obtain cwtstruct from cwtft, the structure array contains seven fields:

- cfs - CWT coefficient matrix
- scales - Vector of linearly spaced scales. The scale vector must be linearly-spaced to ensure accurate reconstruction. icwtlin does not check that the spacing of your scale vector is linear.
- frequencies - frequencies in cycles per unit time (or space) corresponding to the scales. If the sampling period units are seconds, the frequencies are in hertz. The elements of frequencies are in decreasing order to correspond to the elements in the scales vector.
- omega - Angular frequencies used in the Fourier transform in radians/sample
- MeanSIG - Signal mean
- $d t$ - Sampling period in seconds
- wav - Analyzing wavelet. icwtlin uses this wavelet as the reconstruction wavelet. The supported wavelets are:
- 'dog ' - An m-th order derivative of Gaussian wavelet where m is a positive even integer. $m=2$ is the Mexican-hat or Ricker wavelet.
- 'morl' - Analytic Morlet wavelet
- 'morlex' — Nonanalytic Morlet wavelet
- 'morl0' — Nonanalytic Morlet wavelet with exact zero mean
- 'mexh' - Mexican-hat wavelet. This argument represents a special case of the derivative of Gaussian wavelet with $m=2$. This wavelet is also known as the Ricker wavelet.
- 'paul' - Paul wavelet
- 'bump' - Bump wavelet

If you create cwtstruct from the output of cwt, cwtstruct contains all of the preceding fields except omega.

Using cwt to obtain the CWT coefficients, the valid analyzing wavelets are:

- Coiflets - 'coif1','coif2','coif3','coif4', 'coif5'
- Biorthogonal wavelets - 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior4.4', 'bior5.5', bior6.8
- Reverse biorthogonal wavelets - 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio4.4', 'rbio5.5', 'rbio6.8'
- Complex Gaussian wavelets- 'cgau2', 'cgau4', 'cgau6', 'cgau8'

Name-Value Pair Arguments

'IdxSc'

Vector of scales to use in the signal reconstruction. Specifying a subset of scales results in a scale-localized approximation of the analyzed signal.

Output Arguments

xrec

Reconstructed signal. Signal approximation based on the input CWT coefficient matrix, analyzing wavelet, selected scales, and sampling period.

The purpose of the CWT inversion algorithm is not to produce a perfect reconstruction of the input signal. The inversion preserves time and scale-localized features in the reconstructed signal. The amplitude scaling in the reconstructed signal, however, can be significantly different. This difference in scaling can occur whether or not you use all the CWT coefficients in the inversion.

Examples

Compute the inverse CWT of a sum of sine waves with disjoint support.

```
% Define the signal
N = 100;
t = linspace(0,1,N);
Y = sin(8*pi*t).*(t<=0.5) + sin(16*pi*t).*(t>0.5) ;
% Define parameters before analysis
dt = 0.001;
maxsca = 1; s0 = 2*dt; ds = 2*dt;
scales = s0:ds:maxsca;
wname = 'morl';
SIG = {Y,dt};
WAV = {wname,[]};
% Compute the CWT using cwtft with linear scales
cwtS = cwtft(SIG,'scales',scales,'wavelet',WAV);
% Compute inverse CWT using linear scales
Yrec = icwtlin(cwtS,'Signal',Y,'plot');
```


Reconstruct an approximation to a noisy Doppler signal based on thresholded coefficients. Use the universal threshold. Assume the sampling period is 0.05 seconds.

```
load noisdopp;
Y = noisdopp;
N = length(Y);
% Define parameters before analysis
% Assume sampling period is 0.05
dt = 0.05;
maxsca = 100; s0 = 2*dt; ds = 4*dt;
scales = s0:ds:maxsca;
wname = 'morl';
SIG = {Y,dt};
WAV = {wname,[]};
% Compute CWT
cwtS = cwtft(SIG,'scales',scales,'wavelet',WAV,'plot');
% Select subset of coefficients
cwtS1 = cwtS;
Hfreq = cwtS.cfs(1:10,:);
% Set threshold
thr = sqrt(2*log(N))*median(abs(Hfreq(:)))/0.6745;
newCFS = cwtS.cfs;
% Set coefficients smaller than threshold in absolute value to 0
newCFS(abs(newCFS)<thr) = 0;
cwtS1.cfs = newCFS;
% Reconstruction from the modified structure
YRDen = icwtlin(cwtS1,'signal',Y,'plot');
```

Enable the Reconstructed Signal On/Off radio button in the bottom-left corner.

Alternatives

- icwtft - Computes the inverse for the CWT obtained using cwtft with logarithmically spaced scales. If you use linearly spaced scales in cwtft, or you obtain the CWT with cwt, use icwtlin to compute the inverse.

More About

Algorithms

See [4] for a description of the inverse CWT algorithm for linearly spaced scales. The icwtlin function uses heuristic scaling factors for the analyzing wavelets. These scaling factors can result in significant differences in the amplitude scaling of the reconstructed signal.

- "Continuous and Discrete Wavelet Transforms"
- "Continuous Wavelet Transform and Scale-Based Analysis"
- "Inverse Continuous Wavelet Transform"

References

[1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
[2] Farge, M. "Wavelet Transforms and Their Application to Turbulence", Ann. Rev. Fluid. Mech., 1992, 24, 395-457.
[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
[4] Sun,W. "Convergence of Morlet's Reconstruction Formula", preprint, 2010.
[5] Torrence, C. and G.P. Compo. "A Practical Guide to Wavelet Analysis", Bull. Am. Meteorol. Soc., 79, 61-78, 1998.

See Also

icwtft | cwtft | cwt
Introduced in R2011b

idddtree

Inverse dual-tree and double-density 1-D wavelet transform

Syntax

```
xrec = idddtree(wt)
```


Description

$\mathrm{xrec}=$ idddtree (wt) returns the inverse wavelet transform of the wavelet decomposition (analysis filter bank), wt. wt is the output of dddtree.

Examples

Perfect Reconstruction Using Dual-Tree Double-Density Wavelet Filter Bank

Demonstrate perfect reconstruction of a signal using a dual-tree double-density wavelet transform.

Load the noisy Doppler signal. Obtain the dual-tree double-density wavelet transform down to level 5 . Invert the transform and demonstrate perfect reconstruction.

```
load noisdopp;
wt = dddtree('cplxdddt',noisdopp,5,'FSdoubledualfilt',...
    'doubledualfilt');
xrec = idddtree(wt);
max(abs(noisdopp-xrec))
ans =
    1.9291e-12
```

- "Analytic Wavelets Using the Dual-Tree Wavelet Transform"

Input Arguments

wt - Wavelet transform

structure
Wavelet transform, returned as a structure from dddtree with these fields:

type - Type of wavelet decomposition (filter bank) 'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'cplxdt', or 'cplxdddt'. The type, 'dwt ', gives a critically sampled discrete wavelet transform. The other types are oversampled wavelet transforms. 'ddt' is a double-density wavelet transform, 'cplxdt' is a dual-tree complex wavelet transform, and 'cplxdddt' is a double-density dual-tree complex wavelet transform.

level - Level of wavelet decomposition

positive integer
Level of wavelet decomposition, specified as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis) filters structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these fields:

Fdf - First-stage analysis filters
 matrix | cell array

First-stage analysis filters, specified as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1

matrix | cell array

Analysis filters for levels > 1, specified as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N -by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters

matrix | cell array
First-level reconstruction filters, specified as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > $\mathbf{1}$
 matrix | cell array

Reconstruction filters for levels >1, specified as an N -by- 2 or N -by- 3 matrix for singletree wavelet transforms, or a cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the synthesis filters for the corresponding tree.

cfs - Wavelet transform coefficients

cell array of matrices
Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and structure of the matrix elements of the cell array depend on the type of wavelet transform as follows:

- 'dwt' - cfs\{j\}
- $\mathrm{j}=1,2, \ldots$ level is the level.
- cfs $\{$ level+1\} are the lowpass, or scaling, coefficients.
- 'ddt'-cfs\{j\}(:,:,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{k}=1,2$ is the wavelet filter.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdt'-cfs\{j\}(:,:,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdddt'—cfs\{j\}(:,:,k,m)
- $\mathrm{j}=1,2$ level is the level.
- $\mathrm{k}=1,2$ is the wavelet filter.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.

Output Arguments

xrec - Synthesized 1-D signal

vector

Synthesized 1-D signal, returned as a vector. The row or column orientation of xrec depends on the row or column orientation of the 1-D signal input to dddtree.

Data Types: double

More About

- "Critically Sampled and Oversampled Wavelet Filter Banks"

See Also
dddtree | dddtreecfs | plotdt

Introduced in R2013b

idddtree2

Inverse dual-tree and double-density 2-D wavelet transform

Syntax

```
xrec = idddtree2(wt)
```


Description

xrec = idddtree2(wt) returns the inverse wavelet transform of the 2-D decomposition (analysis filter bank), wt. wt is the output of dddtree2.

Examples

Perfect Reconstruction Using Complex Oriented Dual-Tree Wavelet Filter Bank

Demonstrate perfect reconstruction of an image using a complex oriented dual-tree wavelet transform.

Load the image and obtain the complex oriented dual-tree wavelet transform down to level 5 using dddtree2. Reconstruct the image using idddtree2 and demonstrate perfect reconstruction.

```
load woman;
wt = dddtree2('cplxdt',x,5,'dtf2');
xrec = idddtree2(wt);
max(max(abs(X-xrec)))
ans =
    7.3612e-12
```

- "Analytic Wavelets Using the Dual-Tree Wavelet Transform"

Input Arguments

wt - Wavelet transform
structure

Wavelet transform, returned as a structure from dddtree2 with these fields:

type - Type of wavelet decomposition (filter bank) 'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'.'dwt' is the critically sampled DWT. 'ddt' produces a double-density wavelet transform with one scaling and two wavelet filters for both row and column filtering. 'realdt' and 'cplxdt' produce oriented dualtree wavelet transforms consisting of two and four separable wavelet transforms. 'realdddt ' and 'cplxdddt ' produce double-density dual-tree wavelet transforms consisting of two and four separable wavelet transforms.

level - Level of the wavelet decomposition
 positive integer

Level of the wavelet decomposition, specified as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis) filters
 structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these fields:

Fdf - First-stage analysis filters
 matrix | cell array

First-stage analysis filters, specified as an N-by- 2 or N-by- 3 matrix for single-tree wavelet transforms, or a 1-by- 2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1

matrix | cell array

Analysis filters for levels >1, specified as an N-by- 2 or N-by- 3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters

matrix | cell array
First-level reconstruction filters, specified as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by- 2 or N-by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > $\mathbf{1}$
 matrix | cell array

Reconstruction filters for levels >1, specified as an N -by- 2 or N -by- 3 matrix for singletree wavelet transforms, or a 1-by-2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

cfs - Wavelet transform coefficients

cell array of matrices
Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and structure of the matrix elements of the cell array depend on the type of wavelet transform as follows:

- 'dwt'—cfs\{j\}(:,:,d)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'ddt'—cfs\{j\}(:,:,d)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3,4,5,6,7,8$ is the orientation.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'realddt' - cfs\{j\}(:,:,d,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdt'-cfs\{j\}(:,:,d,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(: :) are the lowpass, or scaling, coefficients..
- 'realdddt'—cfs\{j\}(:,:,d,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdddt'—cfs\{j\}(:,:,d,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- $m=1,2$ are the real and imaginary parts.
- $\operatorname{cfs}\{l e v e l+1\}(:,:)$ are the lowpass, or scaling, coefficients.

Output Arguments

xrec - Synthesized 2-D image

matrix
Synthesized image, returned as a matrix.
Data Types: double

More About

- "Critically Sampled and Oversampled Wavelet Filter Banks"

See Also

dddtree2 | dddtreecfs

Introduced in R2013b

idwt

Single-level inverse discrete 1-D wavelet transform

Syntax

```
X = idwt(cA,cD,'wname')
X = idwt(cA,cD,Lo_R,Hi_R)
X = idwt(cA,cD,'wname',L)
X = idwt(cA,cD,Lo_R,Hi_R,L)
idwt(cA,cD,'wname')
X = idwt(...,'mode',MODE)
X = idwt(cA,[],...)
X = idwt([],cD,...)
```


Description

The idwt command performs a single-level one-dimensional wavelet reconstruction with respect to either a particular wavelet ('wname', see wfilters for more information) or particular wavelet reconstruction filters (Lo_R and Hi_R) that you specify.

X = idwt(cA, cD, 'wname') returns the single-level reconstructed approximation coefficients vector X based on approximation and detail coefficients vectors CA and cD, and using the wavelet 'wname'.
$X=$ idwt (cA, cD,Lo_R,Hi_R) reconstructs as above using filters that you specify.

- Lo_R is the reconstruction low-pass filter.
- $\mathrm{Hi}_{-} \mathrm{R}$ is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.
Let la be the length of $c A$ (which also equals the length of $c D$) and lf the length of the filters Lo_R and Hi_R; then length $(X)=L X$ where LX = 2*la if the DWT extension mode is set to periodization. For the other extension modes $L X=2 * l a-l f+2$.

For more information about the different Discrete Wavelet Transform extension modes, see dwtmode.
$X=$ idwt (cA, cD, 'wname',L) or $X=$ idwt (cA, $C D, L o _R, H i _R, L$) returns the length-L central portion of the result obtained using idwt ($C A, C D$, 'wname'). L must be less than LX.

X = idwt(...,'mode', MODE) computes the wavelet reconstruction using the specified extension mode MODE.

X = idwt (cA, [],...) returns the single-level reconstructed approximation coefficients vector X based on approximation coefficients vector cA.

X = idwt([],cD,...) returns the single-level reconstructed detail coefficients vector X based on detail coefficients vector CD.

Examples

Inverse DWT Using Orthogonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with an orthonormal wavelet.

```
load noisdopp;
[A,D] = dwt(noisdopp,'sym4');
x = idwt(A,D,'sym4');
max(abs(noisdopp-x))
ans =
```

 3.2156e-12

Inverse DWT Using Biorthgonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with a biorthogonal wavelet.

```
load noisdopp;
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('bior3.5');
[A,D] = dwt(noisdopp,Lo_D,Hi_D);
x = idwt(A,D,Lo_R,Hi_R);
max(abs(noisdopp-x))
ans =
```


More About

Algorithms

Starting from the approximation and detail coefficients at level $j, c A j$ and $c D_{j}$, the inverse discrete wavelet transform reconstructs $c A_{j-1}$, inverting the decomposition step by inserting zeros and convolving the results with the reconstruction filters.

One-Dimensional IDWT

Reconstruction step

Take the central part of U with the convenient length

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also
dwt | dwtmode | upwlev
Introduced before R2006a

idwt2

Single-level inverse discrete 2-D wavelet transform

Syntax

```
X = idwt2(cA,cH,cV,cD,'wname')
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X = idwt2(cA,cH,cV,cD,'wname',S)
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
idwt2(cA,cH,cV,cD,'wname')
X = idwt2(...,'mode',MODE)
X = idwt2(cA,[],[],[],...)
X = idwt2([],cH,[],[],...)
```


Description

The idwt2 command performs a single-level two-dimensional wavelet reconstruction with respect to either a particular wavelet ('wname', see wfilters for more information) or particular wavelet reconstruction filters (Lo_R and Hi_R) that you specify.

X = idwt2(cA, cH, cV, cD, 'wname') uses the wavelet 'wname' to compute the singlelevel reconstructed approximation coefficients matrix X, based on approximation matrix cA and details matrices cH, cV, and cD (horizontal, vertical, and diagonal, respectively).
$X=$ idwt2(cA, cH, cV, cD, Lo_R, Hi_R) reconstructs as above, using filters that you specify.

- Lo_R is the reconstruction low-pass filter.
- $\mathrm{Hi}_{-} \mathrm{R}$ is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.
Let sa $=\operatorname{size}(c A)=\operatorname{size}(c H)=\operatorname{size}(c V)=s i z e(c D)$ and lf the length of the filters; then size $(X)=S X$, where $S X=2^{*} S A$, if the DWT extension mode is set to periodization. For the other extension modes, SX = 2*size(cA)-lf+2.

For more information about the different Discrete Wavelet Transform extension modes, see dwtmode.
$\mathrm{X}=$ idwt2(cA, $\mathrm{cH}, \mathrm{cV}, \mathrm{cD}$, 'wname', S$)$ and $\mathrm{X}=$
idwt2($\mathrm{CA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$, Lo_R, Hi_R, S) return the size-S central portion of the result obtained using the syntax idwt2(cA, cH, cV, cD, 'wname'). S must be less than SX.

X = idwt2(...,'mode', MODE) computes the wavelet reconstruction using the extension mode MODE that you specify.

X = idwt2(cA,[],[],[], . .) returns the single-level reconstructed approximation coefficients matrix X based on approximation coefficients matrix $C A$.

X = idwt2([], cH, [], [], . .) returns the single-level reconstructed detail coefficients matrix X based on horizontal detail coefficients matrix cH .

The same result holds for $\mathrm{X}=$ idwt2([],[],cV,[],...) and $\mathrm{X}=$ idwt2([],[],[], cD, ...), based on vertical and diagonal details.

More generally, $\mathrm{X}=$ idwt2 $(\mathrm{AA}, \mathrm{HH}, \mathrm{VV}, \mathrm{DD}, \ldots$) returns the single-level reconstructed matrix X, where AA can be cA or [], and so on.
idwt2 is the inverse function of dwt2 in the sense that the abstract statement idwt2(dwt2(X,'wname'), 'wname') would give back X .

Examples

```
% The current extension mode is zero-padding (see dwtmode).
```

```
% Load original image.
```

load woman;
\% X contains the loaded image.
sX = size(X);
\% Perform single-level decomposition
\% of X using db 4 .
[cA1, cH1, cV1, cD1] = dwt2(X,'db4');
\% Invert directly decomposition of X
\% using coefficients at level 1.
AO = idwt2(cA1, cH1, cV1, cD1, 'db4', sX);

```
% Check for perfect reconstruction.
max(max(abs(X-A0)))
ans =
    3.4176e-10
```


More About

Tips

If $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$ are obtained from an indexed image analysis or a truecolor image analysis, they are m-by-n matrices or m-by-n-by-3 arrays, respectively.

For more information on image formats, see the image and imfinfo reference pages.

Algorithms

Two-Dimensional IDWT

Reconstructlon step

See Also
dwt2 | dwtmode | upwlev2
Introduced before R2006a

idwt3

Single-level inverse discrete 3-D wavelet transform

Syntax

```
X = idwt3(WT)
C = idwt3(WT,TYPE)
```


Description

The idwt3 command performs a single-level three-dimensional wavelet reconstruction starting from a single-level three-dimensional wavelet decomposition.
$\mathrm{X}=$ idwt3(WT) computes the single-level reconstructed 3-D array X , based on the three-dimensional wavelet decomposition stored in the WT structure. This structure contains the following fields.

sizeINI	Size of the three-dimensional array X.
mode	Name of the wavelet transform extension mode.
filters	Structure with 4 fields, LoD, HiD, LoR, HiR, which contain the filters used for DWT.
dec	$2 \times 2 \times 2$ cell array containing the coefficients of the decomposition.
dec $\{i, j, k\}, i, j, k=1$ or 2 contains the coefficients obtained by	
low-pass filtering (for i or j or $k=1$) or high-pass filtering (for i	
or j or $k=2)$.	

C = idwt3(WT,TYPE) computes the single-level reconstructed component based on the three-dimensional wavelet decomposition. Valid values for TYPE are:

- A group of three characters ' $x y z$ ', one per direction, with ' x ', ' y ' and ' z ' selected in the set $\left\{{ }^{\prime} a^{\prime},{ }^{\prime} d^{\prime}, l^{\prime} l^{\prime}, ' h '\right\}$ or in the corresponding uppercase set \{'A','D','L','H'\}), where 'A' (or 'L') specifies low-pass filter and 'D' (or 'H') specifies high-pass filter.
- The char 'd ' (or 'h' or 'D' or 'H') which specifies the sum of all the components different from the low-pass component.

Examples

\% Define original 3D data.
$X=$ reshape(1:64,4,4,4);
\% Decompose X using db1.
wt = dwt3(X,'db1');
\% Reconstruct X from coefficients.
XR = idwt3(wt);
\% Compute reconstructed approximation, i.e. the
\% low-pass component.
$\mathrm{A}=$ idwt3(wt,'aa');
\% Compute the sum of all the components different
\% from the low-pass component.
D = idwt3(wt,'d');
\% Reconstruct the component associated with low-pass in the $\% \mathrm{X}$ and Z directions and high-pass in the Y direction.
ADA $=$ idwt3(wt,'ada');

See Also

dwt3 | wavedec3 | waverec3
Introduced in R2010a

ihaart

Inverse 1-D Haar wavelet transform

Syntax

```
xrec = ihaart(a,d)
xrec = ihaart(a,d,level)
xrec = ihaart(___,integerflag)
```


Description

$\mathrm{xrec}=$ ihaart (a, d) returns the inverse 1-D Haar transform, xrec , for the approximation coefficients, a, and the wavelet coefficients, d. Both a and d are obtained from haart.
xrec $=$ ihaart(a,d,level) returns the inverse 1-D Haar transform at the specified level.
xrec = ihaart(__, integerflag) specifies how the inverse 1-D Haar transform handles integer-valued data, using any of the previous syntaxes.

Examples

Inverse Haar Transform of Noisy Data

Obtain the Haar and inverse Haar transforms of noisy data.
Load the noisy data signal
load noisdopp;
Obtain the Haar transform of the noisy signal.

```
[a,d] = haart(noisdopp);
```

Reconstruct the data by inverting the Haar transform.

```
xrec = ihaart(a,d);
```

Compare the original and reconstructed data by determining the maximum difference between them. The difference is essentially zero, which indicates a near-perfect reconstruction.

```
max(abs(xrec-noisdopp'))
```

ans =
4.4409e-15

Inverse Haar Transform of ECG Data

Obtain the Haar transform and inverse Haar transform of ECG heart rate data.
Load and plot the ECG data.

```
load BabyECGData;
plot(times,HR)
xlabel('Hours')
ylabel('Heart Rate')
title('ECG Data')
```


Obtain the Haar transform and inverse Haar transform. Compare the reconstructed data at level 4 to the original data.

```
[a,d] = haart(HR);
HaarHR = ihaart(a,d,4);
figure
plot(times,HaarHR)
xlabel('Hours')
ylabel('Heart Rate')
title('Haar Approximation of Heart Rate')
```


Inverse Haar Transform of Integer Data

Obtain the Haar and inverse Haar transforms on a series of random integers.
Create the series.

```
x = randi(10,100,1);
```

Obtain the Haar and inverse Haar transforms.

```
[a,d] = haart(x,'integer');
xrec = ihaart(a,d,'integer');
```

Plot and compare the original and reconstructed data.

```
subplot(2,1,1)
stem(x); title('Original Data');
subplot(2,1,2);
stem(xrec);
title('Reconstructed Integer-to-Integer Data');
```

Original Data

Reconstructed Integer-to-Integer Data

Determine the maximum difference between the original data values and reconstructed values. The difference is zero, which indicates perfect reconstruction.

```
max(abs(x(:)-xrec(:)))
```

- "Haar Transforms for Time Series Data and Images"

Input Arguments

a - Approximation coefficients

scalar | vector | matrix
Approximation coefficients, specified as a scalar, vector, or matrix of coefficients, depending on the level to which the Haar transform was calculated. a is an output from the haart function.

Approximation, or scaling, coefficients are a lowpass representation of the input. At each level the approximation coefficients are divided into coarser approximation and detail coefficients.

Data Types: double

d - Detail coefficients

scalar | vector | matrix | cell array
Detail coefficients, specified as a scalar, vector, matrix, or cell array of wavelet coefficients, which are a highpass representation of the input. d is an output from the haart function. The number of detail coefficients depends on the selected level and the length of the input. The order of the elements of d is from fine to coarse resolution levels.

If d is a cell array, it can contain scalars, vectors, or matrices. The level of the Haar transform equals the number of elements in d. The coarsest resolution level element of the d cell array is a scalar value.

If d is a vector or matrix, the Haar transform was computed only down to one level coarser in resolution. If you specify only two levels, the detail coefficient is a scalar.

If a and the elements of d are vectors, xrec is a vector. If a and the elements of d are matrices, xrec is a matrix, where each column is the inverse Haar transform of the corresponding columns in a and d.

Data Types: double

level - Maximum level

0 (default) | nonnegative integer

Maximum level to which to invert the Haar transform, specified as a nonnegative integer. If d is a cell array, level is less than or equal to length (d) -1 . If d is a vector or matrix, level must equal 0 or be unspecified. The level must be less than the level used to obtain a and d from haart.

integerflag - Integer-valued data handling

'noninteger' (default) | 'integer'
Integer-valued data handling, specified as a character vector. 'noninteger' does not preserve integer-valued data, and 'integer' preserves it. The 'integer' option applies only if all elements of a and d are integer-valued. You must have used 'integer' with haart to obtain integer-valued a and d inputs. The inverse 1-D Haar transform algorithm, however, uses floating-point arithmetic.

Output Arguments

xrec - Inverse 1-D Haar wavelet transform

vector | matrix
Inverse 1-D Haar wavelet transform, returned as a vector or matrix. If a and the elements of d are vectors, xrec is a vector. If a and the elements of d are matrices, xrec is a matrix, where each column is the inverse 1-D Haar transform of the corresponding columns in a and d.

Data Types: double

See Also

haart | haart2 | ihaart2
Introduced in R2016b

ihaart2

Inverse 2-D Haar wavelet transform

Syntax

```
xrec = ihaart2(a,h,v,d)
xrec = ihaart2(a,h,v,d,level)
xrec = ihaart2(___,integerflag)
```


Description

$\mathrm{xrec}=$ ihaart2 $(\mathrm{a}, \mathrm{h}, \mathrm{v}, \mathrm{d})$ returns the inverse 2-D Haar transform, xrec , for the approximation coefficients, a, and the horizontal, vertical, and diagonal detail coefficients, h, v, and d . All the inputs, $\mathrm{a}, \mathrm{h}, \mathrm{v}$, and d, are outputs of haart2.
xrec $=$ ihaart2($\mathrm{a}, \mathrm{h}, \mathrm{v}, \mathrm{d}$, level) returns the inverse 2-D Haar transform at the specified level.
xrec = ihaart2(\qquad , integerflag) specifies how the inverse 2-D Haar transform handles integer-valued data, using any of the previous syntaxes.

Examples

Inverse 2-D Haar Transform of an Image

Obtain the inverse 2-D Haar transform of image and view the reconstructed image.
Load the image and obtain its 2-D Haar transform.

```
im = imread('mandrill.png');
[a,h,v,d] = haart2(im);
```

Use the inverse 2-D Haar transform to reconstruct the image.

```
xrec = ihaart2(a,h,v,d);
```

Compare the original and reconstructed images.

```
imagesc(im)
title('Original RGB Image')
figure
imagesc(uint8(xrec))
title('Reconstructed RGB Image')
```


Inverse 2-D Haar Transform of Image Limited to Specified Level

Obtain the 2-D Haar transform of an image limiting the transform to 2 levels.
Load and view the image of a cameraman.

```
im = imread('cameraman.tif');
imagesc(im)
```


Obtain the 2-D Haar transform using the default maximum number of levels.
[a,h,v,d] = haart2(im);
Reconstruct the image using the inverse 2-D Haar transform and view the image. Notice the near-perfect reconstruction.

```
xrec = ihaart2(a,h,v,d);
imagesc(xrec)
```


Reconstruct and view the image using the inverse 2-D Haar transform, limited to level 2. Level 2 corresponds to the fourth scale because scale is defined as 2^{j}, where j is the level.
xrec1 $=$ ihaart2(a, h, v, d, 2);
imagesc(xrec1)

Using fewer levels returns the average of the original image at level 2.

Inverse 2-D Haar Transform of Image Limited to Integer Data

Obtain the 2-D Haar transform of an image limiting the transform to integer data.
Load the image of a cameraman.

```
im = imread('cameraman.tif');
```

Obtain the 2-D Haar transform using the 'integer' flag.
[a,h, v, d]=haart2(im, 'integer');
Reconstruct the image using the inverse 2-D Haar transform and view the image.

```
xrec = ihaart2(a,h,v,d,'integer');
imagesc(xrec)
```


Use integer data when you need to reduce the amount of memory used compared to noninteger data.

- "Haar Transforms for Time Series Data and Images"

Input Arguments

a - Approximation coefficients
scalar | matrix

Approximation coefficients, specified as a scalar or matrix of coefficients, depending on the level to which the 2-D Haar transform was calculated. a is an output from the haart2 function. Approximation, or scaling, coefficients are a lowpass representation of the input. If a and the elements of h, v, and d , are vectors, xrec is a vector. If a and the elements of h, v, and d are matrices, xrec is a matrix, where each column is the inverse 2-D Haar transform of the corresponding columns in a and h, v, or d .

Data Types: double

h - Horizontal detail coefficients

matrix | cell array
Horizontal detail coefficients by level, specified as a matrix or cell array of matrices. h is an output from the haart2 function. If h is a matrix, the 2-D Haar transform was computed only down to one level coarser in resolution.

Data Types: double

v - Vertical detail coefficients

matrix or | cell array
Vertical detail coefficients by level, specified as a matrix or cell array of matrices. v is an output from the haart2 function. If v is a matrix, the 2-D Haar transform was computed only down to one level coarser in resolution.

Data Types: double

d - Diagonal detail coefficients

matrix or | cell array
Diagonal detail coefficients by level, specified as a matrix or cell array of matrices. d is an output from the haart2 function. If d is a matrix, the 2-D Haar transform was computed only down to one level coarser in resolution.

Data Types: double

level - Maximum level

0 (default) | nonnegative integer
Maximum level to which to invert the Haar transform, specified as a nonnegative integer. If h is a cell array, level is less than or equal to length $(h)-1$. If h is a vector or matrix, level must equal 0 or be unspecified.

integerflag - Integer-valued data handling

'noninteger' (default) | 'integer

Integer-valued data handling, specified as a character vector. 'noninteger' does not preserve integer-valued data in the 2-D Haar transform, and 'integer ' preserves it. The 'integer' option applies only if all elements of inputs, $\mathrm{a}, \mathrm{h}, \mathrm{v}$, and d , are integer-valued. The inverse 2-D Haar transform algorithm, however, uses floating-point arithmetic.

Output Arguments

xrec - Inverse 2-D Haar wavelet transform

matrix
2-D Haar wavelet transform, returned as a matrix.

Data Types: double

See Also

haart | haart2 | ihaart

Introduced in R2016b

ilwt

Inverse 1-D lifting wavelet transform

Syntax

```
X = ilwt(AD_In_Place,W)
X = ilwt(CA,CD,W)
X = ilwt(AD_In_Place,W,LEVEL)
X = ILWT(CA,CD,W,LEVEL)
X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X = ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC)
```


Description

ilwt performs a 1-D lifting wavelet reconstruction with respect to a particular lifted wavelet that you specify.

X = ilwt(AD_In_Place, W) computes the reconstructed vector X using the approximation and detail coefficients vector AD_In_Place obtained by a lifting wavelet reconstruction. W is a lifted wavelet name (see liftwave).
$X=$ ilwt $(C A, C D, W)$ computes the reconstructed vector X using the approximation coefficients vector CA and detail coefficients vector CD obtained by a lifting wavelet reconstruction.
$X=$ ilwt (AD_In_Place, W, LEVEL) or $X=I L W T(C A, C D, W, L E V E L)$ computes the lifting wavelet reconstruction, at level LEVEL.

X = ilwt(AD_In_Place, W,LEVEL,'typeDEC', typeDEC) or X = ilwt (CA,CD, W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: $\mathrm{X}=$ ilwt (...,LS, ...) instead of X = ILWT(...,W,...).

For more information about lifting schemes, see lsinfo.

Examples

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew);
% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt);
% Invert the two transforms.
xRec = ilwt(cA,cD,lsnew);
err = max(max(abs(x-xRec)))
err =
    4.4409e-016
xRecInt = ilwt(cAint,cDint,lsnewInt);
errInt = max(max(abs(x-xRecInt)))
errInt =
```

 0

See Also

lwt

Introduced before R2006a

ilwt2

Inverse 2-D lifting wavelet transform

Syntax

```
X = ilwt2(AD_In_Place,W)
X = ilwt2(CA,CH,CV,CD,W)
X = ilwt2(AD_In_Place,W,LEVEL)
X = ILWT2(CA,CH,CV,CD,W,LEVEL)
X = ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X = ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC)
```


Description

ilwt2 performs a 2-D lifting wavelet reconstruction with respect to a particular lifted wavelet that you specify.

X = ilwt2(AD_In_Place,W) computes the reconstructed matrix X using the approximation and detail coefficients matrix AD_In_Place, obtained by a lifting wavelet decomposition. W is a lifted wavelet name (see liftwave).
$X=$ ilwt2 $(C A, C H, C V, C D, W)$ computes the reconstructed matrix X using the approximation coefficients vector $C A$ and detail coefficients vectors $C H, C V$, and CD obtained by a lifting wavelet decomposition.
$X=$ ilwt2(AD_In_Place, W,LEVEL) or X = ILWT2(CA, CH, CV, CD, W, LEVEL) computes the lifting wavelet reconstruction, at level LEVEL.

X = ilwt2(AD_In_Place, W,LEVEL,'typeDEC',typeDEC) or X = ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: $\mathrm{X}=$ ilwt2(...,LS,...) instead of $X=$ ilwt2(...,W,...).

For more information about lifting schemes, see lsinfo.

Examples

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew);
% Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt);
% Invert the two transforms.
xRec = ilwt2(cA,cH,cV,cD,lsnew);
err = max(max(abs(x-xRec)))
err =
    0
```

xRecInt = ilwt2(cAint, cHint, cVint, cDint,lsnewInt);
errInt $=\max (\max (\operatorname{abs}(x-x R e c I n t)))$
errInt =
0

More About

Tips

If $A D$ _In_Place or $c A, c H, c V, c D$ are obtained from an indexed image analysis or a truecolor image analysis, they are m-by-n matrices or m-by-n-by-3 arrays, respectively.

For more information on image formats, see the image and imfinfo reference pages.

See Also
 lwt2

Introduced before R2006a

imodwpt

Inverse maximal overlap discrete wavelet packet transform

Syntax

```
xrec = imodwpt(coefs)
xrec = imodwpt(coefs,wname)
xrec = imodwpt(coefs,lo,hi)
```


Description

xrec $=$ imodwpt (coefs) returns the inverse maximal overlap discrete wavelet packet transform (inverse MODWPT), in xrec. The inverse transform is for the terminal node coefficient matrix (coefs) obtained using modwpt with the default length 18 FejerKorovkin ('fk18') wavelet.
xrec = imodwpt(coefs, wname) returns the inverse MODWPT using the orthogonal filter specified the character vector wname. This filter must be the same filter used in modwpt.
xrec = imodwpt(coefs,lo, hi) returns the inverse MODWPT using the orthogonal scaling filter, lo, and wavelet filter, hi.

Examples

Perfect Reconstruction with the Inverse MODWPT

Obtain the MODWPT of an ECG waveform and demonstrate perfect reconstruction using the inverse MODWPT.

```
load wecg;
wpt = modwpt(wecg);
xrec = imodwpt(wpt);
subplot(2,1,1)
plot(wecg);
```

```
title('Original ECG Waveform');
subplot(2,1,2)
plot(xrec);
title('Reconstructed ECG Waveform');
```

Original ECG Waveform

Reconstructed ECG Waveform

Find the largest absolute difference between the original signal and the reconstruction.
The difference is on the order of 10^{-11}, which demonstrates perfect reconstruction.
max(abs(wecg-xrec'))
ans =
1.7902e-11

Inverse MODWPT Using Daubechies Extremal Phase Wavelet

Obtain the MODWPT of Southern Oscillation Index data using the Daubechies extremal phase wavelet with two vanishing moments ('db2'). Reconstruct the signal using the inverse MODWPT.

```
load soi;
wsoi = modwpt(soi,'db2');
xrec = imodwpt(wsoi,'db2');
```


Inverse MODWPT Using Scaling and Wavelet Filters

Obtain the MODWPT of Southern Oscillation Index data using specified scaling and wavelets filters with the Daubechies extremal phase wavelet with two vanishing moments ('db2').

```
load soi;
[lo,hi] = wfilters('db2');
wpt = modwpt(soi,lo,hi);
xrec = imodwpt(wpt,lo,hi);
```

Plot the original SOI waveform and the reconstructed waveform.

```
subplot(2,1,1)
plot(soi)
title('Original SOI Waveform');
subplot(2,1,2)
plot(xrec)
title('Reconstructed SOI Waveform')
```


Input Arguments

coefs - Terminal node coefficients

matrix
Terminal node coefficients of a wavelet packet tree, specified as a matrix. You must obtain the coefficient matrix from modwpt using the 'FullTree', false option. 'FullTree', false is the default value of modwpt.

Data Types: double

wname - Synthesizing wavelet filter
 fk18 (default) | character vector

Synthesizing wavelet filter used to invert the MODWPT, specified as a character vector. The specified wavelet must be the same wavelet as used in the analysis with modwpt.

10 - Scaling filter
 even-length real-valued vector

Scaling filter, specified as an even-length real-valued vector. 10 must be the same scaling filter as used in the analysis with modwpt. You cannot specify both a scaling-wavelet filter pair and a wname filter.

hi - Wavelet filter

even-length real-valued vector
Wavelet filter, specified as an even-length real-valued vector. hi must be the same wavelet filter used in the analysis with modwpt. You cannot specify both a scalingwavelet filter pair and a wname filter.

Output Arguments

xrec - Inverse maximal overlap discrete wavelet packet transform
row vector
Inverse maximal overlap discrete wavelet packet transform, returned as a row vector. The inverse transform is the reconstructed version of the original signal based on the MODWPT terminal node coefficients. xrec has the same number of columns as the input coefs matrix.

References

[1] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK: Cambridge University Press, 2000.
[2] Walden, A.T., and A. Contreras Cristan. "The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events." Proceedings of the Royal Society of London A. Vol. 454, Issue 1976, 1998, pp. 2243-2266.

See Also
modwpt | modwptdetails
Introduced in R2016a

imodwt

Inverse maximal overlap discrete wavelet transform

Syntax

```
xrec = imodwt(w)
xrec = imodwt(w,wname)
xrec = imodwt(w,Lo,Hi)
xrec = imodwt(___,lev)
xrec = imodwt(___,'reflection')
```


Description

xrec = imodwt(w) returns in xrec a reconstructed version of the signal. The reconstructed signal is based on w , the maximal overlap discrete wavelet transform (MODWT) coefficients and on the level of reconstruction, which defaults to zero.
xrec = imodwt (w,wname) reconstructs the signal using wname, the orthogonal wavelet. wname must be the same wavelet used to analyze the signal input to modwt. The reconstruction is up to level 0 , which is a perfect reconstruction of the original signal.
xrec = imodwt(w, Lo, Hi) reconstructs the signal using the orthogonal scaling filter Lo and the wavelet filter Hi. The Lo and Hi filters must be the same filters used to analyze the signal input to modwt. The reconstruction is up to level 0 , which is a perfect reconstruction of the original signal.
xrec = imodwt (\qquad , lev) reconstructs the signal up to level lev. xrec is a projection onto the scaling space at level lev.
xrec = imodwt(\qquad ,'reflection') uses the reflection boundary condition in the reconstruction. If you specify 'reflection', imodwt assumes that the length of the original signal length is one half the number of columns in the input coefficient matrix. By default, imodwt assumes periodic signal extension at the boundary.

Examples

Perfect Reconstruction with the Inverse MODWT

Obtain the MODWT of an ECG signal and demonstrate perfect reconstruction.
Load the ECG signal data and obtain the MODWT.
load wecg;
Obtain the MODWT and the Inverse MODWT.

```
w = modwt(wecg);
```

xrec = imodwt(w);

Use the L-infinity norm to show that the difference between the original signal and the reconstruction is extremely small. The largest absolute difference between the original signal and the reconstruction is on the order of 10^{-12}, which demonstrates perfect reconstruction.

```
norm(abs(xrec'-wecg),Inf)
```

ans $=$

2.3253e-12

Inverse MODWT with Specified Wavelet

Obtain the MODWT of Deutsche Mark-U.S. Dollar exchange rate data and demonstrate perfect reconstruction.

Load the Deutsche Mark-U.S. Dollar exchange rate data.

```
load DM_USD;
```

Obtain the MODWT and the Inverse MODWT using the ' db 2 ' wavelet.

```
wdm = modwt(DM_USD,'db2');
xrec = imodwt(wdm,'db2');
```

Use the L-infinity norm to show that the difference between the original signal and the reconstruction is extremely small. The largest absolute difference between the original
signal and the reconstruction is on the order of 10^{-13}, which demonstrates perfect reconstruction.

```
norm(abs(xrec'-DM_USD),Inf)
```

ans =
1.6362e-13

Inverse MODWT with Specified Filters

Obtain the MODWT of an ECG signal using the Fejer-Korovkin filters.
Load the ECG data.
load wecg;
Create the 8 -coefficient Fejer-Korovkin filters.
[Lo,Hi] = wfilters('fk8');
Obtain the MODWT and Inverse MODWT.

```
wtecg = modwt(wecg,Lo,Hi);
xrec = imodwt(wtecg,Lo,Hi);
```

Plot the original data and the reconstruction.

```
subplot(2,1,1)
plot(wecg)
title('ECG Signal');
subplot(2,1,2)
plot(xrec)
title('Reconstruction')
```

ECG Signal

Reconstruction

Obtain Projection onto Scaling Space

Obtain the MODWT of an ECG signal down to the maximum level and obtain the projection of the ECG signal onto the scaling space at level 3.

Load the ECG data.
load wecg;
Obtain the MODWT.
wtecg = modwt(wecg);
Obtain the projection of the ECG signal onto V_{3}, the scaling space at level three by using the imodwt function.

```
v3proj = imodwt(wtecg,3);
```

Plot the original signal and the projection.

```
subplot(2,1,1)
plot(wecg)
title('Original Signal')
subplot(2,1,2)
plot(v3proj)
title('Projection onto V3')
```

Original Signal

Projection onto V3

Note that the spikes characteristic of the R waves in the ECG are missing in the V_{3} approximation. You can see the missing details by examining the wavelete coefficients at level three.

Plot the level-three wavelet coefficients.
figure
plot (wtecg(3,:))
title('Level-Three Wavelet Coefficients')

Level-Three Wavelet Coefficients

Inverse MODWT with Reflection Boundary

Obtain the inverse MODWT using reflection boundary handling for Southern Oscillation Index data. The sampling period is one day. imodwt with the 'reflection' option assumes that the input matrix, which is the modwt output, is twice the length of the original signal length. imodwt reflection boundary handling reduces the number of wavelet and scaling coefficients at each scale by half.

```
load soi;
wsoi = modwt(soi,4,'reflection');
xrecsoi = imodwt(wsoi,'reflection');
```

Use the L-infinity norm to show that the difference between the original signal and the reconstruction is extremely small. The largest absolute difference between the original signal and the reconstruction is on the order of 10^{-11}, which demonstrates perfect reconstruction.

```
norm(abs(xrecsoi'-soi),Inf)
```


ans =

1.6433e-11

Input Arguments

w - MODWT transform

matrix
MODWT transform, specified as a matrix of size $L+1$-by- N. w is the output of modwt, which is the MODWT of an N-point input signal down to level L. By default, imodwt assumes that you obtained the MODWT using the 'sym4' wavelet with periodic boundary handling.

Data Types: double

wname - Synthesis wavelet

'sym4' (default) | 'dbL' | 'coifL' | 'haarL' | 'fkL' | 'symL' | character vector
Synthesis wavelet, specified as a character vector. The synthesis wavelet must be the same wavelet used in the analysis with modwt.

Lo - Scaling filter

even-length real-valued vector
Scaling filter, specified as an even-length real-valued vector. You can specify Lo only if you do not specify wname. Lo must be the same scaling filter used in the analysis with modwt.

Hi - Wavelet filter

even-length real-valued vector

Wavelet filter, specified as an even-length real-valued vector. You can specify Hi only if you do not specify wname. Hi must be the same wavelet filter used in the analysis with modwt.

lev - Reconstruction level

0 (default) | nonnegative integer
Reconstruction level, specified as a nonnegative integer between 0 and size(w,1)-2. The level must be less than the level used to obtain w from modwt. If lev is 0 and you do not modify the coefficients, imodwt produces a perfect reconstruction of the signal.

Output Arguments

xrec - Reconstructed signal

row vector
Reconstructed version of the original signal based on the MODWT and the level of reconstruction, returned as a row vector.

References

[1] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK: Cambridge University Press, 2000.

See Also
modwt | modwtmra

Introduced in R2015b

ind2depo

Node index to node depth-position

Syntax

[D,P] = ind2depo(ORD,[D P])

Description

ind2depo is a tree-management utility.
For a tree of order ORD, $[D, P]=$ ind2depo (ORD, N) computes the depths D and the positions P (at these depths D) for the nodes with indices N .

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
N must be a column vector of integers ($N \geq 0$).
Note that $[\mathrm{D}, \mathrm{P}]=$ ind2depo(ORD,[D P]).

Examples

Depth and Position in Wavelet Packet Tree

Create a binary wavelet packet tree with three levels.

```
Ord = 2;
Lev = 3;
T = ntree(Ord,Lev);
```

Plot the binary wavelet packet tree.
plot(T)

Obtain the indices of the nodes in linear order.
idx = allnodes(T);
Conver the indices to depth-position format.
[depth,pos] = ind2depo(Ord,idx);
table(depth, pos)

depth	pos
0	0
1	0
1	1
2	0
2	1
2	2
2	3
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	7

See Also
depo2ind
Introduced before R2006a

intwave

Integrate wavelet function psi (Ψ)

Syntax

```
[INTEG,XVAL] = intwave('wname',PREC)
[INTDEC,XVAL,INTREC] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC,0)
[INTEG,XVAL] = intwave('wname')
[INTEG,XVAL] = intwave('wname',8)
intwave('wname',IN2,IN3), PREC = max(IN2,IN3)
intwave('wname',0)
intwave('wname',8,IN3)
intwave('wname')
intwave('wname',8)
```


Description

[INTEG,XVAL] = intwave('wname',PREC) computes the integral, INTEG, of the wavelet function ψ (from $\rightarrow \infty$ to XVAL values): $\int_{-\infty}^{x} \psi(y) d y$ for x in XVAL.

The function Ψ is approximated on the $2^{\text {PREC }}$ points grid XVAL where PREC is a positive integer. 'wname' is a character vector containing the name of the wavelet Ψ (see wfilters for more information).

Output argument INTEG is a real or complex vector depending on the wavelet type.
For biorthogonal wavelets,
[INTDEC,XVAL,INTREC] = intwave('wname',PREC) computes the integrals, INTDEC and INTREC, of the wavelet decomposition function $\Psi_{\text {dec }}$ and the wavelet reconstruction function $\Psi_{\text {rec }}$.
[INTEG,XVAL] = intwave('wname',PREC) is equivalent to [INTEG,XVAL] = intwave('wname', PREC,0).

```
[INTEG,XVAL] = intwave('wname') is equivalent to [INTEG,XVAL] =
``` intwave('wname', 8).

When used with three arguments intwave('wname', IN2,IN3), PREC = \(\max (\mathrm{IN} 2, \mathrm{IN} 3)\) and plots are given.

When IN2 is equal to the special value 0 , intwave ('wname ', 0) is equivalent to intwave('wname', 8, IN3).
intwave('wname') is equivalent to intwave('wname', 8).
intwave is used only for continuous analysis (see cwt for more information).

\section*{Examples}
```

% Set wavelet name.
wname = 'db4';
% Plot wavelet function.
[phi,psi,xval] = wavefun(wname,7);
subplot(211); plot(xval,psi); title('Wavelet');
% Compute and plot wavelet integrals approximations
% on a dyadic grid.
[integ,xval] = intwave(wname,7);
subplot(212); plot(xval,integ);
title(['Wavelet integrals over [-Inf x] ' ...
'for each value of xval']);

```


\section*{More About}

\section*{Algorithms}

First, the wavelet function is approximated on a grid of \(2^{\mathrm{PREC}}\) points using wavefun. A piecewise constant interpolation is used to compute the integrals using cumsum.

\section*{See Also \\ wavefun}

\section*{Introduced before R2006a}

\section*{isnode}

\author{
Existing node test
}

\section*{Syntax}
\(\mathrm{R}=\operatorname{isnode}(T, N)\)

\section*{Description}
isnode is a tree-management utility.
\(\mathrm{R}=\) isnode \((T, N)\) returns 1's for nodes \(N\), which exist in the tree \(T\), and 0 's for others.
\(N\) can be a column vector containing the indices of nodes or a matrix, that contains the depths and positions of nodes.

In the last case, \(N(i, 1)\) is the depth of the \(i\)-th node and \(N(i, 2)\) is the position of the \(i\) th node.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

\section*{Examples}
```

% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

```

\% Change Node Label from Depth_Position to Index \% (see the plot function).

\% Check node index.
isnode(t, [1;3;25])
ans =
1
1
0
\% Check node Depth_Position.
isnode(t,[1 0;3 1; 4 5])
ans =
1

\section*{See Also}
istnode | wtreemgr
Introduced before R2006a

\section*{istnode}

Terminal nodes indices test

\section*{Syntax}
\(R=\) istnode(\(T, N\))

\section*{Description}
istnode is a tree-management utility.
\(R=\) istnode \((T, N)\) returns ranks (in left to right terminal nodes ordering) for terminal nodes \(N\) belonging to the tree \(T\), and 0 's for others.
\(N\) can be a column vector containing the indices of nodes or a matrix that contains the depths and positions of nodes.

In the last case, \(N(i, 1)\) is the depth of the \(i\)-th node and \(N(i, 2)\) is the position of the \(i\) th node.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

\section*{Examples}
```

% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)

```

\% Change Node Label from Depth_Position to Inde \% (see the plot function)x.

\% Find terminal nodes and return indices for terminal
\% nodes in the tree.
istnode(t, [14])
ans =
6
istnode(t,[15])
ans =
0
istnode(t, [1;7;14;25])
ans =
0
```

        1
        6
        0
    istnode(t,[1 0;3 1;4 5])
ans =
O
2
0

```

\section*{See Also}
isnode | wtreemgr
Introduced before R2006a

\section*{iswt}

Inverse discrete stationary wavelet transform 1-D

\section*{Syntax}
```

X = iswt(SWC,'wname')
X = iswt(SWA,SWD,'wname')
X = iswt(SWA(end,:),SWD,'wname')
X = iswt(SWC,Lo_R,Hi_R)
X = iswt(SWA,SWD,Lo_R,Hi_R)
X = iswt(SWA(end,:),SWD,Lo_R,Hi_R)

```

\section*{Description}
iswt performs a multilevel 1-D stationary wavelet reconstruction using either a specific orthogonal wavelet ('wname', see wfilters for more information) or specific reconstruction filters (Lo_R and Hi_R).

X = iswt(SWC,'wname') or X = iswt(SWA,SWD,'wname') or X = iswt (SWA (end, :) , SWD, 'wname') reconstructs the signal \(X\) based on the multilevel stationary wavelet decomposition structure SWC or [SWA, SWD] (see swt for more information).

X = iswt (SWC,Lo_R,Hi_R) or X = iswt(SWA,SWD,Lo_R,Hi_R) or X = iswt (SWA(end, :), SWD, Lo_R, Hi_R) reconstruct as above, using filters that you specify.
- Lo_R is the reconstruction low-pass filter.
- \(\mathrm{Hi}_{-} \mathrm{R}\) is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

\section*{Examples}
\% Load original 1D signal.
```

load noisbloc; s = noisbloc;
% Perform SWT decomposition at level 3 of s using db1.
swc = swt(s,3,'db1');
% Second usage.
[swa,swd] = swt(s,3,'db1');
% Reconstruct s from the stationary wavelet
% decomposition structure swc.
a0 = iswt(swc,'db1');
% Second usage.
aObis = iswt(swa,swd,'db1');
% Check for perfect reconstruction.
err = norm(s-a0)
err =
9.6566e-014
errbis = norm(s-a0bis)
errbis =
9.6566e-014

```

\section*{References}

Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform and some statistical applications," Lecture Notes in Statistics, 103, pp. 281-299.

Coifman, R.R.; Donoho D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp 125-150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

\section*{See Also}
idwt | swt | waverec
Introduced before R2006a

\section*{iswt2}

Inverse discrete stationary wavelet transform 2-D

\section*{Syntax}
```

X = iswt2(SWC,'wname')
X = iswt2(A,H,V,D,wname)
X = iswt2(A(:,:,end),H,V,D,'wname')
X = iswt2(SWC,Lo_R,Hi_R)
X = iswt2(A,H,V,\overline{D},\mp@subsup{L}{0}{\prime}_\overline{R},Hi_R)
X = iswt2(A(:,:,end),H,V,\overline{D},Lo_R,Hi_R)

```

\section*{Description}
iswt2 performs a multilevel 2-D stationary wavelet reconstruction using either a specific orthogonal wavelet ('wname' see wfilters for more information) or specific reconstruction filters (Lo_R and Hi_R).
\(\mathrm{X}=\) iswt2(SWC, 'wname') or \(\mathrm{X}=\) iswt2 \((\mathrm{A}, \mathrm{H}, \mathrm{V}, \mathrm{D}\), wname \()\) or \(\mathrm{X}=\) iswt2(A(:, : end) , \(H, V, D, '\) wname') reconstructs the signal \(X\), based on the multilevel stationary wavelet decomposition structure SWC or [A, H, V, D] (see swt2).
\(X=\) iswt2(SWC,Lo_R,Hi_R) or \(X=\) iswt2 (A,H,V,D,Lo_R,Hi_R) or \(X=\) iswt2(A(:, : , end) , H, V, D, Lo_R, Hi_R) reconstructs as in the previous syntax, using filters that you specify:
- Lo_R is the reconstruction low-pass filter.
- Hi _R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

\section*{Examples}
```

% Load original image.
load nbarb1;

```
```

% Perform SWT decomposition
% of X at level 3 using sym4.
swc = swt2(X,3,'sym4');
% Second usage.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');
% Reconstruct s from the stationary wavelet
% decomposition structure swc.
a0 = iswt2(swc,'sym4');
% Second usage.
aObis = iswt2(ca,chd,cvd,cdd,'sym4');
% Check for perfect reconstruction.
err = max(max(abs(X-a0)))
errbis = max(max(abs(X-aObis)))
err =
2.3462e-10
errbis =
2.3462e-10

```

\section*{More About}

\section*{Tips}

If SWC or (\(\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}\)) are obtained from an indexed image analysis or a truecolor image analysis, then X is an m -by- n matrix or an \(m\)-by- \(n\)-by- 3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

\section*{References}

Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform and some statistical applications," Lecture Notes in Statistics, 103, pp. 281-299.

Coifman, R.R.; Donoho D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp. 125-150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

\author{
See Also \\ idwt2 | swt2 | waverec2 \\ Introduced before R2006a
}

\section*{iwsst}

Inverse wavelet synchrosqueezed transform

\section*{Syntax}
```

xrec = iwsst(sst)
xrec = iwsst(sst,f,freqrange)
xrec = iwsst(sst,iridge)
xrec = iwsst(
,wav)
xrec = iwsst(___,iridge,Name,Value)

```

\section*{Description}
xrec = iwsst(sst) inverts the input synchrosqueezed transform, sst, and returns the inverse in vector xrec. To obtain the sst input, use the wsst function. The iwsst function assumes that you obtain sst using the analytic Morlet wavelet.

Note: The wavelet transform does not preserve a nonzero mean. After inverting the synchrosqueezed transform, you must add back the original signal mean.
xrec = iwsst(sst,f,freqrange) inverts the synschrosqueezed transform for a specified range of frequencies, freqrange, contained in the frequency vector, f. The frequency vector, \(f\), is the output of wsst.
xrec \(=\) iwsst(sst,iridge) inverts the synchrosqueezed transform along the timefrequency ridges specified by iridge, the index column vector. iridge is the output of wsstridge. The xrec output is the same size as iridge.
xrec = iwsst (__ , wav) uses the analytic wavelet specified by wav to invert the synchrosqueezed transform. This wavelet must be the same wavelet as used in wsst. You can include any of the input arguments from previous syntaxes.
xrec = iwsst(\(\qquad\) ,iridge,Name,Value) returns the inverse synchrosqueezed transform with additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Inverse Synchrosqueezed Transform of Chirp}

Obtain the wavelet synchrosqueezed transform of a quadratic chirp using default values. Then reconstruct the signal using the inverse wavelet synchrosqueezed transform.
```

load quadchirp;
sst = wsst(quadchirp);
xrec = iwsst(sst);

```

\section*{Synchrosqueezed and Inverse Synchrosqueezed Transform of Chirp}

Obtain the wavelet synchrosqueezed transform of a quadratic chirp sampled at 1000 Hz . Then reconstruct the chirp.

Load the chirp and obtain the synchrosqueezed transform.
```

load quadchirp;
sstchirp = wsst(quadchirp,'ExtendSignal',true);

```

Extract the maximum energy time-frequency ridge and reconstruct the signal mode along the ridge.
```

[~,iridge] = wsstridge(sstchirp);
xrec = iwsst(sstchirp,iridge);

```

Plot and zoom in on the original and reconstructed signal.
```

plot(tquad,xrec,'r');
hold on;
plot(tquad,quadchirp,'b--');
xlabel('Time'); ylabel('Amplitude');
set(gca,'ylim',[-1.5 1.5]);
legend('Reconstruction','Original');
grid on;
title('Reconstruction of Chirp Along Maximum Time-Frequency Ridge');
zoom xon
zoom(50)

```


\section*{Inverse Synchrosqueezed Transform of Range of Frequencies}

Obtain the inverse synchrosqueezed transform for a specified frequency range of a two-component signal. The input is a combination of an amplitude-modulated and a frequency-modulated signal.

Create the signal.
```

t = 0:0.001:0.1;
x1 = (2+0.5*cos(2*pi*10*t)).*cos(2*pi*200*t+10*sin(2*pi*5*t));
x2 = cos(2*pi*50*t);
sig = x1+x2;

```

Obtain the wavelet synchrosqueezed transform and plot the resulting two frequency components.
```

[sst,f] = wsst(sig,1000,'ExtendSignal',true);
contour(t,f,abs(sst));
grid on;
title('Wavelet Synchrosqueezed Transform');
ylabel('Frequency');
xlabel('Time');
hold on
plot(t,140*ones(size(t)),'r--');
plot(t,260*ones(size(t)),'r--');

```


Obtain the inverse synchrosqueezed transform for frequencies from 140 Hz to 260 Hz . Plot the result.
```

xrec = iwsst(sst,f,[140,260]);
subplot(2,1,1);
plot(t,x1);
title('Original Signal');
subplot(2,1,2);
plot(t,xrec,'r');
title('Reconstructed Signal');

```

\section*{Original Signal}

Reconstructed Signal

\section*{Synchrosqueezed and Inverse Synchrosqueezed Transform of Speech Signal}

Obtain the wavelet synchrosqueezed transform and inverse synchrosqueezed transform of a speech sample using the bump wavelet.

Load the speech signal and obtain the synchrosqueezed transform and inverse synchrosqueezed transform.
```

load mtlb;
dt = 1/Fs;
t = 0:dt:numel(mtlb)*dt-dt;
Txmtlb = wsst(mtlb,'bump');
xrec = iwsst(Txmtlb,'bump');

```

Obtain the L-infinity norm of the difference between the original waveform and the reconstruction. Plot the results.

Linf = norm(abs(mtlb-xrec), Inf);
plot(t,mtlb) ;
hold on;
xlabel('Seconds'); ylabel('Amplitude');
plot(t,xrec,'r');
title(\{'Reconstruction of Wavelet Synchrosqueezed Transform'; ... ['Largest Absolute Difference ' num2str(Linf,'\%1.2f')]\});

\section*{Synchrosqueezed Transform Using Specified Number of Bins for Chirp}

This example shows how to invert the wavelet synchrosqueezed transform using a specified number of frequency bins for a quadratic chirp. The chirp is sampled at 1000 Hz.
```

load quadchirp;
sstchirp = wsst(quadchirp,'ExtendSignal',true);

```

Extract the maximum energy time-frequency ridge using 10 bins on each side of the the iridge index and reconstruct the signal mode along the ridge.
[~,iridge] = wsstridge(sstchirp);
xrec \(=\) iwsst(sstchirp,iridge,'NumFrequencyBins',10);

Plot the original and reconstructed signal.
```

plot(tquad,xrec,'r');
hold on;
plot(tquad,quadchirp,'b--');
xlabel('Time'); ylabel('Amplitude');
set(gca,'ylim',[-1.5 1.5]);
legend('Reconstruction','Original');
grid on;
title('Reconstruction of Chirp Along Maximum Time-Frequency Ridge');

```

- "Time-Frequency Reassignment and Mode Extraction with Synchrosqueezing"

\section*{Input Arguments}

\section*{sst - Synschrosqueezed transform}
matrix
Synschrosqueezed transform, specified as a matrix. sst is the output from the wsst function.

\section*{f - Synschrosqueezed transform frequencies}
vector
Synchrosqueezed transform frequencies corresponding to the rows of the synchrosqueezed transform, specified as a vector. The number of elements in the frequency vector is equal to the number of rows in the sst input. If you specify \(f\), you must also specify freqrange.

\section*{freqrange - Frequency range}
two-element vector
Frequency range for which to return inverse synchrosqueezed transform values, specified as a two-element vector. The values of freqrange must be in the range of the values of the frequencies, \(f\). The first and second elements of freqrange define the start and end of the frequency range, where the frequency values in that range must be positive and strictly increasing. If you specify freqrange, you must also specify \(f\).

\section*{iridge - Time-frequency ridge row indices}
vector or matrix
Time-frequency ridge row indices of the synchrosqueezed transform specified as a vector or matrix. iridge is the output of the wsstridge function. If iridge is a matrix, iwsst inverts the synchrosqueezed transform along the first column of iridge. Then, it iteratively reconstructs along subsequent columns of iridge. The sizes of iridge and the xrec output are the same.

\section*{wav - Analytic wavelet}
'analmorl' (default) | 'bump'
Analytic wavelet used to compute the inverse synchrosqueezed transform, specified as 'analmorl' or 'bump '. These character vectors specify the analytic Morlet and bump wavelet, respectively. You must use the same wavelet in the reconstruction that you used to compute the synchrosqueezed transform, sst.

\section*{Example:}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: 'NumFrequencyBins', 12

\section*{' NumFrequencyBins ' - Number of frequency bins}

16 (default) | positive integer
Number of additional frequency bins to include on either side of each iridge index bin, specified as the comma-separated pair consisting of 'NumFrequencyBins' and a positive integer. If the number of additional bins exceeds the number of frequency bins available at a particular time step, iwsst truncates the reconstruction at the first or last frequency bin. The default, 16, is one half the default number of voices per octave.

You can include this Name, Value argument in any position in a syntax. To specify this argument, you also specify iridge, which is the output of wsstridge. You cannot include a frequency, \(f\) and frequency range, freqrange, if you include the number of frequency bins.

\section*{Output Arguments}

\section*{xrec - Inverse synchrosqueezed transform}
vector or matrix
Inverse synchrosqueezed transform, returned as a vector or matrix. If you do not specify an iridge input, xrec is a column vector with the same number of rows as sst. If you specify an iridge input, xrec is the same size as iridge.

\section*{More About}
- "Wavelet Synchrosqueezing"

\section*{References}
[1] Daubechies, I., I., J. Lu, and H. T. Wu. "Synchrosqueezed Wavelet Transforms: an Empricial Mode Decomposition-like Tool", Applied and Computational Harmonic Analysis. Vol. 30(2), pp. 243-261.
[2] Thakur, G., E. Brevdo, N. S. Fučkar, and H. T. Wu. "The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications." Signal Processing. Vol. 93, pp. 1079-1094.

\section*{See Also}
wsst | wsstridge

Introduced in R2016a

\section*{laurmat}

Laurent matrices constructor

\section*{Syntax}

M = laurmat (V)

\section*{Description}
\(M\) = laurmat (\(V\)) returns the Laurent matrix object \(M\) associated with \(V\) which can be a cell array (at most two dimensional) of Laurent polynomials (see laurpoly) or an ordinary matrix.

\section*{Examples}
\% Define Laurent matrices.
M1 = laurmat \((\) eye \((2,2)\))
Mr = laurmat(eye (2,2))

Z = laurpoly (1,1);
M2 \(=\operatorname{laurmat(\{ 1Z;01\})}\)

\% Calculus on Laurent polynomials.
P = M1 * M2
\[
1 \quad z^{\wedge}(+1)
\]

\(d=\operatorname{det}(P)\)
\(d(z)=1\)

\section*{References}

Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press.
Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546.

\section*{See Also \\ laurpoly}

Introduced before R2006a

\section*{laurpoly}

Laurent polynomials constructor

\section*{Syntax}
```

P = laurpoly(C,d)
P = laurpoly(C,'dmin',d)
P = laurpoly(C,'dmax',d)
P = laurpoly (C,d)

```

\section*{Description}
\(P=\) laurpoly (\(C, d\)) returns a Laurent polynomial object. \(C\) is a vector whose elements are the coefficients of the polynomial \(P\) and \(d\) is the highest degree of the monomials of \(P\).

If \(m\) is the length of the vector \(C, P\) represents the following Laurent polynomial:
```

P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)

```
\(P=\) laurpoly (C, 'dmin', d) specifies the lowest degree instead of the highest degree of monomials of \(P\). The corresponding output \(P\) represents the following Laurent polynomial:
```

P(z) = C(1)* z^(d+m-1) + .. + C(m-1)* (^(d+1) + C(m)* *^d

```
\(P=\operatorname{laurpoly}\left(C, \operatorname{dmax}^{\prime}, d\right)\) is equivalent to \(P=\operatorname{laurpoly}(C, d)\).

\section*{Examples}
```

% Define Laurent polynomials.
P = laurpoly([1:3],2);
P = laurpoly([1:3],'dmax',2)
P(z) = + z^(+2) + 2* (^(+1) + 3
P = laurpoly([1:3],'dmin',2)

```
```

P(z) = + z^(+4) + 2* z^(+3) + 3* z^(+2)
% Calculus on Laurent polynomials.
Z = laurpoly(1,1)
Z(z) = z^(+1)
Q = Z*P
Q(z) = + z^(+5) + 2* z^(+4) + 3* z^(+3)
R = Z^1 - Z^-1
R(z) = + z^(+1) - z^(-1)

```

\section*{References}

Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press.
Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546.

\author{
See Also \\ laurmat
}

Introduced before R2006a

\section*{leaves}

Determine terminal nodes

\section*{Syntax}
```

N = leaves(T)
[N,K] = leaves(T,'sort')
N = leaves(T,'dp')
[N,K] = leaves(T,'sortdp')
[N,K] = leaves(T,'sdp')

```

\section*{Description}
\(\mathrm{N}=\) leaves \((T)\) returns the indices of terminal nodes of the tree \(T\) where N is a column vector.

The nodes are ordered from left to right as in tree \(T\).
\([\mathrm{N}, \mathrm{K}]=\) leaves(T,'s') or [\(\mathrm{N}, \mathrm{K}]=\) leaves(T,'sort') returns sorted indices. \(\mathrm{M}=\) \(N(K)\) are the indices reordered as in tree \(T\), from left to right.
\(\mathrm{N}=\) leaves(\(\mathrm{T}, \mathrm{\prime} \mathrm{dp}\) ') returns a matrix N , which contains the depths and positions of terminal nodes.
\(N(i, 1)\) is the depth of the \(i\)-th terminal node, and \(N(i, 2)\) is the position of the i-th terminal node.
[N,K] = leaves(T,'sortdp') or [N,K] = leaves(T,'sdp') returns sorted nodes.

\section*{Examples}
```

% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);

```
```

plot(t)

```

\% List terminal nodes (index). tnodes_ind \(=\) leaves(t) tnodes_ind = 7
8
4
5
13
14
\% List terminal nodes (sorted on index).
[tnodes_ind,Ind] = leaves(t,'sort')
tnodes_ind =
 4
 5
 7
 8
 13
 14
Ind =
 3
 4
 1
 2
 5
 6
\% List terminal nodes (Depth_Position).
tnodes_depo \(=\) leaves(t,'dp')
tnodes_depo =
```

    0
    3 1
    2 1
    2 2
    3 6
    3 7
    % List terminal nodes (sorted on Depth_Position).
[tnodes_depo,Ind] = leaves(t,'sortdp')
tnodes_depo =
2-1
2 2
3 0
3 1
3 6
3 7
Ind =
3
4
1
2
5
6

```

\section*{See Also}
```

tnodes | noleaves
Introduced before R2006a

```

\section*{lifffilt}

Apply elementary lifting steps on quadruplet of filters

\section*{Syntax}
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS)
liftfilt(LoD, HiD, LoR, HiR, ELS, TYPE, VALUE)

\section*{Description}
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS) returns the four filters LoDN, HiDN, LoRN, and HiRN obtained by an elementary lifting step (ELS) starting from the four filters LoD, HiD, LoR, and HiR. The four input filters verify the perfect reconstruction condition.

ELS is a structure such that
- TYPE = ELS. type contains the type of the elementary lifting step. The valid values for TYPE are ' p ' (primal) or 'd' (dual).
- VALUE = ELS.value contains the Laurent polynomial T associated with the elementary lifting step (see laurpoly). If VALUE is a vector, the associated Laurent polynomial T is equal to laurpoly (VALUE, 0).

In addition, ELS may be a scaling step. In that case, TYPE is equal to 's ' (scaling) and VALUE is a scalar different from zero.
liftfilt(LoD, HiD, LoR, HiR, ELS, TYPE, VALUE) gives the same outputs.

Note If TYPE = ' p ', HiD and LoR are unchanged.
If TYPE = 'd', LoD and HiR are unchanged.
If TYPE = 's', the four filters are changed.
If ELS is an array of elementary lifting steps, liftfilt (..., ELS) performs each step successively.
liftfilt(...,FLAGPLOT) plots the successive biorthogonal pairs-scaling function and wavelet.

\section*{Examples}
```

% Get Haar filters.
[LoD,HiD,LoR,HiR] = wfilters('haar');
% Lift the Haar filters.
twoels(1) = struct('type','p','value',...
laurpoly([0.125-0.125],0));
twoels(2) = struct('type','p','value',...
laurpoly([0.125-0.125],1));
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,twoels);
% The biorthogonal wavelet bior1.3 is obtained up to
% an unsignificant sign.
[LoDB,HiDB,LoRB,HiRB] = wfilters('bior1.3');
samewavelet = ...
isequal([LoDB,HiDB,LoRB,HiRB],[LoDN,-HiDN,LoRN,HiRN])
samewavelet =
1

```

\section*{See Also}
```

laurpoly
Introduced before R2006a

```

\section*{liftwave}

Lifting schemes

\section*{Syntax}
```

LS = liftwave(WNAME)
LS = liftwave(WNAME,'Int2Int')

```

\section*{Description}

LS = liftwave(WNAME) returns the lifting scheme associated with the wavelet specified by WNAME. LS is a structure, not an integer, and used by lwt, ilwt, lwt2, etc.

LS = liftwave(WNAME, 'Int2Int') performs an integer to integer wavelet transform. Using 'Int2Int' produces an LS such that when you use [CA, CD] = lwt (X,LS) or \(Y=\operatorname{lwt}(X, L S)\) and \(X\) is a vector of integers, the resulting CA, CD, and \(Y\) are vectors of integers. If you omit ' Int2Int' then lwt produces vectors of real numbers.

The valid values for WNAME are
\begin{tabular}{|l|}
\hline WNAME Values \\
\hline 'lazy' \\
\hline 'haar' \\
\hline 'db1', 'db2', 'db3', 'db4', 'db5', 'db6', 'db7', 'db8' \\
\hline 'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 'sym7', 'sym8' \\
\hline Cohen-Daubechies-Feauveau wavelets \\
'cdf1.1','cdf1.3','cdf1.5' \\
'cdf3.1','cdf3.3','cdf3.5' \\
'cdf5.1','cdf5.3','cdf5.5' \\
'cdf2.2','cdf2.4','cdf2.6' \\
'cdf4.2','cdf4.4','cdf4.6' \\
'cdf6.2',' cdf6.4','cdf6.6' \\
\hline 'biorX. \(\mathbf{Y}^{\prime}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline WNAME Values \\
\hline 'rbioX. \(\mathrm{Y}^{\prime}\) \\
\hline 'bs3' \\
\hline 'rbs3' \\
\hline '9.7' \\
\hline 'r9.7' \\
\hline
\end{tabular}

For more information about lifting schemes, see lsinfo.

\section*{Examples}
\% Start from the db2 wavelet and get the \% corresponding lifting scheme.
lsdb2 = liftwave('db2');
\% Visualize the obtained lifting scheme. displs(lsdb2);
lsdb2 \(=\) \{...
\begin{tabular}{|c|c|c|c|}
\hline 'd' & -1.73205081] & & [0] \\
\hline 'p' & -0.06698730 & \(0.43301270]\) & [1] \\
\hline 'd' & \(1.00000000]\) & & [-1] \\
\hline \(1.93185165]\) & 0.51763809] & & [] \\
\hline
\end{tabular}

\section*{See Also}
laurpoly
Introduced before R2006a

\section*{localmax}

Identify and chain local maxima

\section*{Syntax}
[lmaxima,indices] = localmax(inputmatrix)
[lmaxima,indices] = localmax(inputmatrix,initrow)
[lmaxima,indices] = localmax(inputmatrix,initrow,regflag)

\section*{Description}
[lmaxima,indices] = localmax(inputmatrix) identifies and chains the local maxima in the rows of inputmatrix.
[lmaxima,indices] = localmax(inputmatrix,initrow) initializes the chaining of local maxima beginning with row initrow. If there are no local maxima in initrow, all rows in Imaxima with indices less than initrow consist of only zeros.
[lmaxima,indices] = localmax(inputmatrix,initrow,regflag) replaces initrow of inputmatrix with the level-5 approximation (scaling) coefficients obtained with the sym4 wavelet.

\section*{Input Arguments}

\section*{inputmatrix}
inputmatrix is a matrix of real or complex numbers. Most often, inputmatrix is a matrix of continuous wavelet transform (CWT) coefficients, and you use localmax to identify maxima lines. localmax operates on the absolute values of inputmatrix.

\section*{initrow}

Initialization row for chaining local maxima. The chaining algorithm begins at initrow and decrements the row index by 1 until the first row of the matrix is reached. By specifying initrow, you can exclude rows from the chaining algorithm.

Default: size(inputmatrix,1)

\section*{regflag}

Regularization flag. If you set regflag to true, the row of inputmatrix corresponding to initrow is replaced by the level-5 approximation (scaling) coefficients obtained with the sym4 wavelet.

Default: true

\section*{Output Arguments}

\section*{Imaxima}

Matrix with local maxima chains. Imaxima only has nonzero entries at the locations of local maxima in the absolute values of inputmatrix. Denote the row index of lmaxima by R. You can determine the value of Imaxima at a local maximum in row \(R\) as follows:
- If \(\mathrm{R}>\) initRow, the value of Imaxima at a local maximum is 1 .
- If \(R=\) initRow, the value of Imaxima at a local maximum is the column index in row R.
- If \(R<\) initRow, the value of lmaxima at a local maximum in row \(R\) is the column index of the nearest local maximum in row \(\mathrm{R}+1\).

To illustrate this, if inputmatrix is:
\begin{tabular}{llll}
3 & 2 & 5 & 3 \\
4 & 6 & 3 & 2 \\
4 & 4 & 7 & 4 \\
4 & 6 & 2 & 2
\end{tabular}
lmaxima with initRow = 4 and regflag = false is:
\begin{tabular}{llll}
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 2 & 0 & 0
\end{tabular}
lmaxima with initRow \(=3\) and regflag = false is:
\begin{tabular}{llll}
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 1 & 0 & 0
\end{tabular}
- If the local maximum in row \(R\) lies between two local maxima in row \(R+1\), the value of the local maximum in row \(R\) is the higher column index in row \(R+1\).

To illustrate this, if inputmatrix is:
\begin{tabular}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0
\end{tabular}
lmaxima with initRow = 2 and regflag = false is:
\begin{tabular}{llllll}
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 2 & 0 & 4 & 0 & 0
\end{tabular}
lmaxima with initRow = 1 and regflag = false is:
\begin{tabular}{llllll}
0 & 0 & 3 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0
\end{tabular}

\section*{indices}

Linear indices of the nonzero values of lmaxima. Use ind2sub to convert the linear indices to matrix row and column indices.

\section*{Examples}

\section*{Local Maxima of a Matrix}

Construct a 4 -by- 4 matrix with local maxima at the following row-column indices: \((4,2)\), (3,3), (2,2), and (1,3). Set initrow to 4 and regflag to false.
```

inputmatrix = ...
[3 3 2 5
4 6 3
4 4 4
4 6 2 2];
[lmaxima,indices] = localmax(inputmatrix,4,false);
lmaxima

```

Because localmax operates on the absolute values of inputmatrix, setting inputmatrix \((4,2)=-\) inputmatrix \((4,2)\) produces an identical lmaxima.
inputmatrix \((4,2)=-i n p u t m a t r i x(4,2) ;\)
[lmaxima1,indices1] = localmax(inputmatrix,4,false);
isequal(lmaxima,lmaxima1)

\section*{CWT Coefficient Moduli and Maxima Lines}

Determine the local maxima from the CWT of the cuspamax signal using the default Morse wavelet. Plot the CWT coefficient moduli and maxima lines.
load cuspamax;
Plot the cuspamax signal and notice the shape of the signal near samples 300 and 700 . The signal shows a cusp near sample 700.
```

plot(cuspamax);

```
xlabel('Sample');

Plot the wavelet transform modulus maxima and note the local Holder exponent values at samples 308 and 717.
wtmm(cuspamax,'ScalingExponent','local');

Holder exponent values indicate the strength of the singularities in a signal. Signal locations where the local Holder exponent is 0 are discontinuous at that location.

Locations with Holder exponenets greater than or equal to 1 are differentiable. Holder exponent values less than but close to 1 indicate that the signal at the location is almost differentiable. The closer the Holder exponent value is to 0 , the stronger the singularity.

The Holder exponent at sample 308 is 1.9 and at sample 717 is 0.39 . The low Holder value at sample 717 confirms that the signal is not differentiable and has a fairly strong singularity at that point.

Introduced in R2008a

\section*{Is2filt}

Transform lifting scheme to quadruplet of filters

\section*{Syntax}
```

[LoD,HiD,LoR,HiR] = ls2filt(LS)

```

\section*{Description}
[LoD,HiD,LoR,HiR] = ls2filt(LS) returns the four filters LoD, HiD, LoR, and HiR associated with the lifting scheme LS.

\section*{Examples}
\% Start from the db2 wavelet and get the \% corresponding lifting scheme. LS = liftwave('db2')

LS =
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{d}^{\prime}\) & -1.7321] & 0] \\
\hline 'p' & [1x2 double] & [1] \\
\hline 'd' & [1] & [-1] \\
\hline [1.9319] & \(0.5176]\) & [] \\
\hline
\end{tabular}
```

% Visualize the obtained lifting scheme.
displs(LS);
LS = {...

'd'	-1.73205081]		[0]
'p'	-0.06698730	0.43301270]	[1]
'd'	$1.00000000]$		[-1]
1.93185165]	$0.51763809]$		[]

```
\% Get the filters from the lifting scheme.
```

[LoD,HiD,LoR,HiR] = ls2filt(LS)
LoD =
-0.1294 0.2241 0.8365 0.4830
HiD =
-0.4830 0.8365 -0.2241 -0.1294
LoR =
0.4830 0.8365 0.2241 -0.1294
HiR =
-0.1294 -0.2241 0.8365 -0.4830
% Get the db2 filters using wfilters.
% You can check the equality.
[LoDref,HiDref,LoRref,HiRref] = wfilters('db2')
LoDref =
-0.1294 0.2241 0.8365 0.4830
HiDref =
-0.4830 0.8365 -0.2241 -0.1294
LoRref =
0.4830 0.8365 0.2241 -0.1294
HiRref =
-0.1294 -0.2241 0.8365 -0.4830

```

\section*{See Also}
filt2ls | lsinfo

Introduced before R2006a

\section*{Isinfo}

Lifting schemes information

\section*{Syntax}
lsinfo

\section*{Description}
lsinfo displays the following information about lifting schemes. A lifting scheme LS is a \(\mathrm{N} x 3\) cell array. The \(\mathrm{N}-1\) first rows of the array are elementary lifting steps (ELS). The last row gives the normalization of LS.

Each ELS has this format:
\{type, coefficients, max_degree\}
where type is ' \(p\) ' (primal) or ' \(d\) ' (dual), coefficients is a vector \(C\) of real numbers defining the coefficients of a Laurent polynomial \(P\) described below, and max_degree is the highest degree \(d\) of the monomials of \(P\).

The Laurent polynomial P is of the form
\[
P(z)=C(1)^{*} z^{\wedge} d+C(2)^{*} z^{\wedge}(d-1)+\ldots+C(m)^{*} z^{\wedge}(d-m+1)
\]

The lifting scheme LS is such that for
\(\mathrm{k}=1: \mathrm{N}-1, \operatorname{LS}\{\mathrm{k},: \mathrm{\}}\) is an ELS, where
\(\operatorname{LS}\{\mathrm{k}, 1\}\) is the lifting type p ' (primal) or ' d ' (dual).
\(\operatorname{LS}\{\mathrm{k}, 2\}\) is the corresponding lifting filter.
\(\operatorname{LS}\{k, 3\}\) is the highest degree of the Laurent polynomial corresponding to the filter LS \(\{k, 2\}\).
\(\operatorname{LS}\{\mathrm{N}, 1\}\) is the primal normalization (real number).
\(\operatorname{LS}\{N, 2\}\) is the dual normalization (real number).
\(\operatorname{LS}\{N, 3\}\) is not used.
Usually, the normalizations are such that \(\operatorname{LS}\{N, 1\} * \operatorname{LS}\{N, 2\}=1\).
For example, the lifting scheme associated with the wavelet db 1 is
```

LS = {...;
'd' [ [ -1] [0]
'p' [0.5000] [0]
[1.4142] [0.7071] []
}

```

\section*{See Also}
displs | laurpoly
Introduced before R2006a

\section*{Iwt}

1-D lifting wavelet transform

\section*{Syntax}
[CA,CD] = lwt (\(X, W\))
X_InPlace \(=\) lwt \((X, W)\)
lwt (\(X, W\), LEVEL)
X_InPlace \(=\) lwt \((X, W\), LEVEL, 'typeDEC', typeDEC \()\)
\([\overline{\mathrm{C}} \mathrm{A}, \mathrm{CD}]=\operatorname{lwt}(X, W\), LEVEL,'typeDEC',typeDEC \()\)

\section*{Description}
lwt performs a 1-D lifting wavelet decomposition with respect to a particular lifted wavelet that you specify.
[CA,CD] = lwt \((X, W)\) computes the approximation coefficients vector CA and detail coefficients vector CD, obtained by a lifting wavelet decomposition, of the vector \(X . W\) is a lifted wavelet name (see liftwave).

X_InPlace \(=\) lwt \((X, W)\) computes the approximation and detail coefficients. These coefficients are stored in place:

CA = X_InPlace(1:2:end) and CD = X_InPlace(2:2:end)
lwt (\(X, W\), LEVEL) computes the lifting wavelet decomposition at level LEVEL.
X_InPlace = lwt (\(X, W\), LEVEL, 'typeDEC', typeDEC) or [CA, CD] =
lw̄t (\(X, W\), LEVEL, 'typeDEC', typeDEC) with typeDEC \(=\) ' \(w\) ' or 'wp' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: lwt (X,LS, . .) instead of lwt (\(\mathrm{X}, \mathrm{W}, \ldots\). . .

For more information about lifting schemes, see lsinfo.

\section*{Examples}
```

% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew)
cA =
1.9445 4.9497 7.7782 10.6066
cD =
0.7071 0.7071 0.7071 0.7071
% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt)
cAint =
1
cDint =
1 1 1 1

```

\section*{More About}

\section*{Algorithms}

This function uses the polyphase algorithm.
lwt reduces to dwt with zero-padding extension mode and without extra-coefficients.

\section*{References}

Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press.
Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546.

\section*{See Also \\ ilwt}

Introduced before R2006a

\section*{lwt2}

2-D lifting wavelet transform

\section*{Syntax}
```

[CA,CH,CV,CD] = lwt2(X,W)
X_InPlace = lwt2(X,LS)
lwt2(X,W,LEVEL)
X_InPlace = lwt2(X,W,LEVEL,'typeDEC',typeDEC)
[\overline{CA},\textrm{CH},\textrm{CV},\textrm{CD}] = LWT2(X,W,LEVEL,'typeDEC',typeDEC)

```

\section*{Description}
lwt2 performs a 2-D lifting wavelet decomposition with respect to a particular lifted wavelet that you specify.
\([C A, C H, C V, C D]=\operatorname{lwt2}(X, W)\) computes the approximation coefficients matrix CA and detail coefficients matrices CH, CV, and CD, obtained by a lifting wavelet decomposition, of the matrix \(X . W\) is a lifted wavelet name (see liftwave).

X_InPlace \(=\) lwt2 \((X, L S)\) computes the approximation and detail coefficients. These coefficients are stored in place:
```

- CA = X_InPlace(1:2:end,1:2:end)

```
- CH = X_InPlace(2:2:end,1:2:end)
- CV = X_InPlace(1:2:end,2:2:end)
- CD = X_InPlace(2:2:end,2:2:end)
lwt2 (\(X, W\), LEVEL) computes the lifting wavelet decomposition at level LEVEL.
X_InPlace \(=1 w t 2(X, W\), LEVEL, 'typeDEC' ,typeDEC) or \([\mathrm{CA}, \mathrm{CH}, \mathrm{CV}, \mathrm{CD}]=\) LWT2 (\(X, W\), LEVEL, 'typeDEC', typeDEC) with typeDEC = 'w' or 'wp' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS:
lwt2 (X,LS , . .) instead of LWT2 (X, W, ...).
For more information about lifting schemes, see lsinfo.

\section*{Examples}
```

% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew)
cA =

```
 \(5.7500 \quad 22.7500\)
 \(10.0000 \quad 27.0000\)
\(\mathrm{cH}=\)
 \(1.0000 \quad 1.0000\)
 \(1.0000 \quad 1.0000\)
cV =
 \(4.0000 \quad 4.0000\)
 \(4.0000 \quad 4.0000\)
\(c D=\)
 \(0 \quad 0\)
 \(0 \quad 0\)
\% Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint, cHint, cVint, cDint] = lwt2(x,lsnewInt)
cAint =
```

        3 11
        5 13
    cHint =
1
1
cVint =
4 4
4 4
cDint =
0
0

```

\section*{More About}

\section*{Tips}

When X represents an indexed image, X , as well as the output arrays \(\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}\), or X_InPlace are m-by-n matrices. When X represents a truecolor image, it is an m-by-n-by- 3 array, where each m-by-n matrix represents a red, green, or blue color plane concatenated along the third dimension.

For more information on image formats, see the image and imfinfo reference pages .

\section*{Algorithms}

This function implements the polyphase algorithm.
lwt reduces to dwt with zero-padding extension mode and without extra-coefficients.

\section*{References}

Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press.

Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546.

\section*{See Also}
ilwt2

Introduced before R2006a

\section*{Iwtcoef}

Extract or reconstruct 1-D LWT wavelet coefficients

\section*{Syntax}

Y = lwtcoef(TYPE,XDEC,LS,LEVEL,LEVEXT)
Y = lwtcoef(TYPE,XDEC,W,LEVEL,LEVEXT)

\section*{Description}
\(Y\) = lwtcoef(TYPE,XDEC,LS,LEVEL,LEVEXT) returns the coefficients or the reconstructed coefficients of level LEVEXT, extracted from XDEC, the LWT decomposition at level LEVEL obtained with the lifting scheme LS.

The valid values for TYPE are
\begin{tabular}{|l|l|}
\hline TYPE Values & Description \\
\hline ' a ' & Approximations \\
\hline 'd' & Details \\
\hline ' ca ' & Coefficients of approximations \\
\hline ' cd ' & Coefficients of details \\
\hline
\end{tabular}

Y = lwtcoef(TYPE,XDEC,W,LEVEL, LEVEXT) returns the same output using W, which is the name of a lifted wavelet.

\section*{Examples}
```

% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 2 of a simple signal.

```
```

x = 1:8;
xDec = lwt(x,lsnew,2)
xDec =
4.3438 0.7071 2.1250 0.7071 13.0313 0.7071
2.0000
0.7071
% Extract approximation coefficients of level 1.
ca1 = lwtcoef('ca',xDec,lsnew,2,1)
ca1 =
1.9445 4.9497 7.7782 10.6066
% Reconstruct approximations and details.
a1 = lwtcoef('a',xDec,lsnew,2,1)
a1 =
1.3750 1.3750 3.5000 3.5000 5.5000 5.5000
7.5000 7.5000
a2 = lwtcoef('a',xDec,lsnew,2,2)
a2 =

2.1719	2.1719	2.1719	2.1719	6.5156	6.5156

    6.5156 6.5156
    d1 = lwtcoef('d',xDec,lsnew,2,1)
d1 =
-0.3750 0.6250 -0.5000 0.5000 -0.5000 0.5000
-0.5000 0.5000
d2 = lwtcoef('d',xDec,lsnew,2,2)
d2 =

```
```

% Check perfect reconstruction.
err = max(abs(x-a2-d2-d1))
err =
9.9920e-016

```

\section*{See Also}
ilwt | lwt

Introduced before R2006a

\section*{Iwtcoef2}

Extract or reconstruct 2-D LWT wavelet coefficients

\section*{Syntax}

Y = lwtcoef2(TYPE,XDEC,LS,LEVEL,LEVEXT)
Y = lwtcoef2(TYPE,XDEC,W,LEVEL,LEVEXT)

\section*{Description}
\(Y=\) lwtcoef2(TYPE, XDEC, LS, LEVEL, LEVEXT) returns the coefficients or the reconstructed coefficients of level LEVEXT, extracted from XDEC, the LWT decomposition at level LEVEL obtained with the lifting scheme LS.

The valid values for TYPE are listed in this table.
\begin{tabular}{|l|l|}
\hline TYPE Values & Description \\
\hline ' a ' & Approximations \\
\hline ' h ' & Horizontal details \\
\hline ' v ' & Vertical details \\
\hline 'd ' & Diagonal details \\
\hline ' ca ' & Coefficients of approximations \\
\hline ' ch ' & Coefficients of horizontal details \\
\hline ' cv ' & Coefficients of vertical details \\
\hline ' cd ' & Coefficients of diagonal details \\
\hline
\end{tabular}
\(Y=\) lwtcoef2(TYPE, XDEC, W, LEVEL, LEVEXT) returns the same output using W, which is the name of a lifted wavelet.

\section*{Examples}
```

% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

```
```

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 2 of a simple image.
x = reshape(1:16,4,4);
xDec = lwt2(x,lsnew,2)
xDec =

27.4375	4.0000	17.0000	4.0000
1.0000	0	1.0000	0
4.2500	4.0000	0.0000	4.0000
1.0000	0	1.0000	0

% Extract approximation coefficients of level 1.
ca1 = lwtcoef2('ca',xDec,lsnew,2,1)
ca1 =
5.7500 22.7500
10.0000 27.0000
% Reconstruct approximations and details.
a1 = lwtcoef2('a',xDec,lsnew,2,1)
a1 =
2.8750 2.8750 11.3750 11.3750
2.8750 2.8750 11.3750 11.3750
5.0000 5.0000 13.5000 13.5000
5.0000 5.0000 13.5000 13.5000
a2 = lwtcoef2('a',xDec,lsnew,2,2)
a2 =

6.8594	6.8594	6.8594	6.8594
6.8594	6.8594	6.8594	6.8594
6.8594	6.8594	6.8594	6.8594
6.8594	6.8594	6.8594	6.8594

h1 = lwtcoef2('h',xDec,lsnew,2,1)

```
```

h1 =

-0.3750	-0.3750	-0.3750	-0.3750
0.6250	0.6250	0.6250	0.6250
-0.5000	-0.5000	-0.5000	-0.5000
0.5000	0.5000	0.5000	0.5000

v1 = lwtcoef2('v',xDec,lsnew,2,1)
v1 =
-1.5000 2.5000 -2.0000 2.0000
-1.5000 2.5000 -2.0000 2.0000
-1.5000 2.5000 -2.0000 2.0000
-1.5000 2.5000 -2.0000 2.0000
d1 = lwtcoef2('d',xDec,lsnew,2,1)
d1 =

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

h2 = lwtcoef2('h',xDec,lsnew,2,2)
h2 =
-0.7969 -0.7969 -0.7969 -0.7969
-0.7969 -0.7969 -0.7969 -0.7969
1.3281 1.3281 1.3281 1.3281
1.3281 1.3281 1.3281 1.3281
v2 = lwtcoef2('v',xDec,lsnew,2,2)
v2 =

-3.1875	-3.1875	5.3125	5.3125
-3.1875	-3.1875	5.3125	5.3125
-3.1875	-3.1875	5.3125	5.3125
-3.1875	-3.1875	5.3125	5.3125

```
```

d2 = lwtcoef2('d',xDec,lsnew,2,2)
d2 =
1.0e-015
0.2498
0.2498 0.2498 -0.4163 -0.4163
-0.4163 -0.4163 0.6939 0.6939
-0.4163 -0.4163 0.6939 0.6939
% Check perfect reconstruction.
err = max (max (abs (x-a2-h2-v2-d2-h1-v1-d1)))
err =
3.5527e-015

```

\section*{More About}

\section*{Tips}

If XDEC is obtained from an indexed image analysis or a truecolor image analysis, it is an \(m\)-by-n matrix or an m-by-n-by- 3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

\section*{See Also \\ ilwt2|lwt2}

Introduced before R2006a

\section*{mdwtcluster}

Multisignals 1-D clustering

\section*{Syntax}

S = mdwtcluster(X)
S = mdwtcluster(X,'PropName1',PropVal1,'PropName2',PropVal2,...)

\section*{Description}
\(S=\) mdwtcluster \((X)\) constructs clusters from a hierarchical cluster tree. The input matrix \(X\) is decomposed in row direction using the DWT function with the haar wavelet and the maximum allowed level.

S = mdwtcluster(X,'PropName1',PropVal1,'PropName2',PropVal2,...) allows you to modify some properties. The valid choices for PropName are:

Note: mdwtcluster requires the Statistics and Machine Learning Toolbox \({ }^{\text {TM }}\)
\begin{tabular}{|ll|}
\hline 'dirDec' & 'r' (row) or 'c ' (column). Default value is ' \(r\) '. \\
\hline 'level' & \begin{tabular}{l}
Level of the DWT decomposition. Default value is: \\
level=fix(log2(size \((X, d))\) \\
where d=1 or d=2, depending on the dirDec value.
\end{tabular} \\
\hline 'wname' & Wavelet name used for DWT. Default value is 'haar '. \\
\hline 'dwtEXTM' & DWT extension mode (see dwtmode). \\
\hline 'pdist' & \begin{tabular}{l}
See Statistics and Machine Learning Toolbox pdist \\
function. Default value is 'euclidean '.
\end{tabular} \\
\hline 'linkage' & \begin{tabular}{l}
See Statistics and Machine Learning Toolbox linkage \\
function. Default value is 'ward '.
\end{tabular} \\
\hline 'maxclust' & \begin{tabular}{l}
Number of clusters. Default value is 6. The input variable \\
can be a vector.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 'lst2clu' & \begin{tabular}{l}
Cell array that contains the list of data to classify. \\
If \(N\) is the level of decomposition, the allowed name values for the cells are: \\
- 's'-Signal \\
- 'aj' - Approximation at level j \\
- 'dj' - Detail at level j \\
- 'caj' - Coefficients of approximation at level j \\
- 'cdj' - Coefficients of detail at level \(j\) \\
Default value is \{'s'; ca1';...;'caN'\}.
\end{tabular} \\
\hline
\end{tabular}

The output structure \(S\) is such that for each partition \(j\) :
\begin{tabular}{|ll|}
\hline S.Idx (:, j\()\) & \begin{tabular}{l}
Contains the cluster numbers obtained from the \\
hierarchical cluster tree (see cluster in the Statistics and \\
Machine Learning Toolbox software).
\end{tabular} \\
\hline S.Incons (: , j) & \begin{tabular}{l}
Contains the inconsistent values of each non-leaf node in \\
the hierarchical cluster tree (see Statistics and Machine \\
Learning Toolbox software function inconsistent).
\end{tabular} \\
\hline S.Corr (j) & \begin{tabular}{l}
Contains the cophenetic correlation coefficients of the \\
partition (see Statistics and Machine Learning Toolbox \\
software function cophenet).
\end{tabular} \\
\hline
\end{tabular}

Note If maxclustVal is a vector, then IdxCLU is a multidimensional array such that \(\operatorname{IdxCLU}(:, j, k)\) contains the cluster numbers obtained from the hierarchical cluster tree for \(k\) clusters.

\section*{Examples}
```

load elecsig10
lst2clu = {'s','ca1','ca3','ca6'};
% Compute the structure resulting from multisignal clustering
S = mdwtcluster(signals,'maxclust',4,'lst2clu',lst2clu)

```
```

S =
IdxCLU: [70x4 double]
Incons: [69x4 double]
Corr: [0.7920 0.7926 0.7947 0.7631]
% Retrieve indices of clusters
IdxCLU = S.IdxCLU;
% Plot the first cluster
plot(signals(IdxCLU(:, 1)==1,:)','r');
hold on;
% Plot the third clustering
plot(signals(IdxCLU(:,1)==3,:)','b')

```

\% Check the equality of partitions equalPART \(=\) isequal(IdxCLU(:,1), \(\operatorname{IdxCLU(:,3))~}\)
equalPART =

1
\% So we can see that we obtain the same partitions using
\% coefficents of approximation at level 3 instead of original
\% signals. Much less information is then used.

\section*{See Also}
mdwtdec | wavedec

Introduced in R2008a

\section*{mdwtdec}

Multisignal 1-D wavelet decomposition

\section*{Syntax}
```

DEC = mdwtdec(DIRDEC,X,LEV,WNAME)
DEC = mdwtdec(DIRDEC,X,LEV,LoD,HiD,LoR,HiR)
DEC = mdwtdec(...,'mode',EXTMODE)

```

\section*{Description}

DEC = mdwtdec (DIRDEC, X, LEV, WNAME) returns the wavelet decomposition at level LEV of each row (if DIRDEC \(=\) ' \(r\) ') or each column (if DIRDEC \(=\) ' \(c\) ') of matrix \(X\), using the wavelet WNAME.

The output DEC is a structure with the following fields:
\begin{tabular}{|l|l|}
\hline 'dirDec ' & Direction indicator: 'r' (row) or ' c ' (column) \\
\hline ' level' & Level of the DWT decomposition \\
\hline 'wname ' & Wavelet name \\
\hline 'dwtFilters ' & Structure with four fields LoD, HiD, LoR and HiR \\
\hline 'dwtEXTM ' & DWT extension mode (see dwtmode) \\
\hline 'dwtShift ' & DWT shift parameter (0 or 1) \\
\hline 'dataSize' & Size of X \\
\hline 'ca' & Approximation coefficients at level LEV \\
\hline 'cd ' & Cell array of detail coefficients, from level 1 to level LEV \\
\hline
\end{tabular}

Coefficients \(C A\) and \(C D\{k\}\) (for \(k=1\) to LEV) are matrices and are stored in rows if DIRDEC \(=' r\) ' or in columns if DIRDEC \(={ }^{\prime} c\) '.

DEC \(=\) mdwtdec (DIRDEC, \(\mathrm{X}, \mathrm{LEV}\), LoD, HiD, LoR, HiR \()\) uses the four filters instead of the wavelet name.

DEC = mdwtdec (...,'mode', EXTMODE) computes the wavelet decomposition with the EXTMODE extension mode that you specify (see dwtmode for the valid extension modes).

\section*{Examples}
```

% Load original 1D-multisignal.
load thinker

```
\% Perform a decomposition at level 2 using wavelet db2.
dec \(=\) mdwtdec('r', \(X, 2,{ }^{\prime} d b 2\) ')
dec \(=\)
 dirDec: 'r'
 level: 2
 wname: 'db2'
 dwtFilters: [1x1 struct]
 dwtEXTM: 'sym'
 dwtShift: 0
 dataSize: [192 96]
 ca: [192×26 double]
 cd: \{[192×49 double] [192x26 double]\}
\% Compute the associated filters of db2 wavelet.
[LoD,HiD,LoR,HiR] = wfilters('db2');
\% Perform a decomposition at level 2 using filters.
decBIS \(=\) mdwtdec ('r', \(\mathrm{X}, 2\), LoD, HiD,LoR,HiR)
decBIS =
 dirDec: 'r'
 level: 2
 wname: ''
 dwtFilters: [1x1 struct]
 dwtEXTM: 'sym'
 dwtShift: 0
 dataSize: [192 96]
 ca: [192×26 double]
 cd: \{[192×49 double] [192x26 double]\}

\section*{References}

Daubechies, I. , Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed., 1992.

Mallat, S., "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, 1989, pp. 674693.

Meyer, Y. , Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

\section*{See Also}
mdwtdec | wavedec

Introduced in R2007a

\section*{mdwtrec}

Multisignal 1-D wavelet reconstruction

\section*{Syntax}
```

X = mdwtrec(DEC)
X = mdwtrec(DEC,IDXSIG)
Y = mdwtrec(DEC,TYPE,LEV)
A = mdwtrec(DEC,'a')
A = mdwtrec(DEC,'a',LEVDEC)
D = mdwtrec(DEC,'d')
CA = mdwtrec(DEC,'ca')
CA = mdwtrec(DEC,'ca',LEVDEC)
CD = mdwtrec(DEC,'cd',MODE)
CFS = mdwtrec(DEC,'cfs',MODE)
Y = mdwtrec(...,IDXSIG)

```

\section*{Description}
\(X=\) mdwtrec (DEC) returns the original matrix of signals, starting from the wavelet decomposition structure DEC (see mdwtdec).
\(X=\) mdwtrec (DEC,IDXSIG) reconstructs the signals whose indices are given by the vector IDXSIG.
\(Y=\) mdwtrec (DEC, TYPE, LEV) extracts or reconstructs the detail or approximation coefficients at level LEV depending on the TYPE value. The maximum value for LEV is LEVDEC = DEC.level.

When TYPE is equal to:
- 'cd ' or 'ca', coefficients of level LEV are extracted.
- 'd' or 'a', coefficients of level LEV are reconstructed.
- 'a' or 'ca', LEV must be such that \(0 \leq L E V \leq\) LEVDEC.
- 'd' or 'cd', LEV must be such that \(1 \leq L E V \leq\) LEVDEC.
\(A=m d w t r e c(D E C, ' a ')\) is equivalent to \(A=m d w t r e c(D E C, ' a ', L E V D E C)\).
\(D=m d w t r e c\left(D E C,{ }^{\prime} d^{\prime}\right)\) returns a matrix containing the sum of all the details, so that \(\mathrm{X}=\mathrm{A}+\mathrm{D}\).
\(C A=m d w t r e c(D E C, ' c a ')\) is equivalent to \(C A=m d w t r e c(D E C, ' c a ', L E V D E C)\).
\(C D=m d w t r e c\left(D E C,{ }^{\prime} c d^{\prime}, M O D E\right)\) returns a matrix containing all the detail coefficients.
CFS \(=\) mdwtrec (DEC, 'cfs' , MODE) returns a matrix containing all the coefficients.
For MODE = 'descend ' the coefficients are concatened from level LEVDEC to level 1 and MODE = 'descend ' concatenates from level 1 to level LEVDEC). The default is MODE = 'descend '. The concatenation is made row-wise if DEC. dirDEC = ' \(r\) ' or column-wise if DEC.dirDEC \(=\) ' \(c\) '.
\(Y=m d w t r e c(. . .\), IDXSIG \()\) extracts or reconstructs the detail or the approximation coefficients for the signals whose indices are given by the vector IDXSIG.

\section*{Examples}
```

% Load original 1D-multisignal.
load thinker
% Perform a decomposition at level }2\mathrm{ using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
% Reconstruct the original matrix of signals, starting from
% the wavelet decomposition structure dec.
XR = mdwtrec(dec);
% Compute the reconstruction error.
errREC = max (max(abs(X-XR)))
errREC =
2.1026e-010
% Reconstruct the original signal 31, the corresponding
% approximation at level 2, details at levels 1 and 2.
Y = mdwtrec(dec,31);
A2 = mdwtrec(dec,'a',2,31);
D2 = mdwtrec(dec,'d',2,31);

```
```

D1 = mdwtrec(dec,'d',1,31);
% Compute the reconstruction error for signal 31.
errREC = max(abs(Y-A2-D2-D1))
errREC =
6.8390e-014

```

\section*{References}

Daubechies, I., Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed., 1992.

Mallat, S., "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, 1989, pp. 674693.

Meyer, Y., Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

\section*{See Also}
mdwtdec | waverec

Introduced in R2007a

\section*{measerr}

Approximation quality metrics

\section*{Syntax}
[PSNR, MSE, MAXERR, L2RAT] \(=\) measerr (X,XAPP)
[...] = measerr(...,BPS)

\section*{Description}
[PSNR, MSE, MAXERR, L2RAT] = measerr (X, XAPP) returns the peak signal-to-noise ratio, PSNR, mean square error, MSE, maximum squared error, MAXERR, and ratio of squared norms, L2RAT, for an input signal or image, \(X\), and its approximation, XAPP.
[...] = measerr(..., BPS) uses the bits per sample, BPS, to determine the peak signal-to-noise ratio.

\section*{Input Arguments}

\section*{X}

X is a real-valued signal or image.
XAPP
XAPP is a real-valued signal or image approximation with a size equal to that of the input data, \(X\).

\section*{BPS}

BPS is the number of bits per sample in the data.
Default: 8

\section*{Output Arguments}

\section*{PSNR}

PSNR is the peak signal-to-noise ratio in decibels (dB). The PSNR is only meaningful for data encoded in terms of bits per sample, or bits per pixel. For example, an image with 8 bits per pixel contains integers from 0 to 255 .

\section*{MSE}

The mean square error (MSE) is the squared norm of the difference between the data and the approximation divided by the number of elements.

\section*{MAXERR}

MAXERR is the maximum absolute squared deviation of the data, \(X\), from the approximation, XAPP.

\section*{L2RAT}

L2RAT is the ratio of the squared norm of the signal or image approximation, XAPP, to the input signal or image, \(X\).

\section*{Examples}

Approximate an image and calculate approximation quality metrics.
```

load woman;
Xapp = X;
Xapp(X<=50) = 1;
[psnr,mse,maxerr,L2rat] = measerr(X,Xapp);
figure; colormap(map);
subplot(1,2,1); image(X);
subplot(1,2,2); image(Xapp);

```

Measure approximation quality in an RGB image.
```

X = imread('africasculpt.jpg');
Xapp = X;
Xapp (X<=100) = 1;
[psnr,mse,maxerr,L2rat] = measerr (X,Xapp)

```
```

figure;
subplot(1,2,1); image(X);
subplot(1,2,2); image(Xapp);

```

\section*{More About}

\section*{Peak Signal to Noise Ratio (PSNR)}

The following equation defines the PSNR:
\[
20 \log _{10}\left(\frac{2^{B}-1}{\sqrt{M S E}}\right)
\]
where \(M S E\) represents the mean square error and \(B\) represents the bits per sample.

\section*{Mean Square Error (MSE)}

The mean square error between a signal or image, \(X\), and an approximation, \(Y\), is the squared norm of the difference divided by the number of elements in the signal or image:

\section*{References}

Huynh-Thu, Q.Scope of validity of PSNR in image /video quality assessment, Electronics Letters, 44, 2008, pp. 800-801.

\section*{See Also}
wden | wdencmp

Introduced in R2010b

\section*{mexihat}

Mexican hat (Ricker) wavelet

\section*{Syntax}
[PSI,X] = mexihat(LB,UB,N)

\section*{Description}
\([P S I, X]=\) mexihat (LB, UB, \(N\)) returns values of the Mexican hat wavelet on an \(N\) point regular grid, \(X\), in the interval [LB, UB]. The Mexican hat wavelet is also known as the Ricker wavelet.

Output arguments are the wavelet function PSI computed on the grid X .
This wavelet has [-55] as effective support. Although [-5 5] is the correct theoretical effective support, a wider effective support, [-8 8], is used in the computation to provide more accurate results.

This function is proportional to the second derivative function of the Gaussian probability density function.

Note: You can use gauswavf to obtain a second order derivative of a Gaussian wavelet. If you use the negative of this normalized derivative, the resulting wavelet resembles the Mexican hat wavelet.

\section*{Examples}

\section*{Mexican Hat Wavelet}

Create a Mexican hat wavelet with support on [-5,5]. Use 1,000 sample points. Plot the result.
```

lb = -5;
ub = 5;

```
```

N = 1000;
[psi,xval] = mexihat(lb,ub,N);
plot(xval,psi)
title('Mexican Hat Wavelet');

```


\section*{See Also}
waveinfo

\section*{Introduced before R2006a}

\section*{meyer}

Meyer wavelet

\section*{Syntax}
[PHI, PSI, T] = meyer(LB,UB,N)

\section*{Description}
[PHI,PSI,T] = meyer(LB, UB , N) returns Meyer scaling and wavelet functions evaluated on an \(N\) point regular grid in the interval [LB, UB].
\(N\) must be a power of two.
Output arguments are the scaling function PHI and the wavelet function PSI computed on the grid \(T\). These functions have \([-88]\) as effective support.

If only one function is required, a fourth argument is allowed:
```

[PHI,T] = meyer(LB,UB,N,'phi')
[PSI,T] = meyer(LB,UB,N,'psi')

```

When the fourth argument is used, but not equal to 'phi' or 'psi', outputs are the same as in the main option.

The Meyer wavelet and scaling function are defined in the frequency domain.
By changing the auxiliary function (see meyeraux for more information), you get a family of different wavelets.

\section*{Examples}
```

% Set effective support and grid parameters.

```
lb \(=-8\); ub \(=8 ; n=1024\);
\% Compute and plot Meyer wavelet and scaling functions.
[phi,psi,x] = meyer(lb,ub,n);
subplot(211), plot(x,psi)
title('Meyer wavelet')
subplot(212), plot(x, phi)
title('Meyer scaling function')

\section*{More About}

\section*{Algorithms}

Starting from an explicit form of the Fourier transform \(\hat{\phi}\) of \(\phi\), meyer computes the values of \(\hat{\phi}\) on a regular grid, and then the values of \(\phi\) are computed using instdfft, the inverse nonstandard discrete FFT.

The procedure for \(\Psi\) is along the same lines.

\section*{References}

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed., pp. 117-119, 137, 152.
```

See Also
meyeraux | wavefun | waveinfo

```

Introduced before R2006a

\section*{meyeraux}

Meyer wavelet auxiliary function

\section*{Syntax}
\(Y=\operatorname{meyeraux}(X)\)

\section*{Description}
\(Y=\) meyeraux \((X)\) returns values of the auxiliary function used for Meyer wavelet generation evaluated at the elements of the vector or matrix \(X\).

The function is
\[
35 x^{4}-84 x^{5}+70 x^{6}-20 x^{7}
\]

\section*{See Also}
meyer

\author{
Introduced before R2006a
}

\section*{modwpt}

Maximal overlap discrete wavelet packet transform

\section*{Syntax}
```

wpt = modwpt(x)
wpt = modwpt(x,wname)
wpt = modwpt(x,lo,hi)
wpt = modwpt(___,lev)
[wpt,packetlevs] = modwpt( ___)
[wpt,packetlevs,cfreq] = modwpt(

```
\(\qquad\)
``` )
[wpt,packetlevs,cfreq,energy] = modwpt(
```

\qquad

```
[wpt,packetlevs,cfreq,energy,relenergy] = modwpt(___)
[___] = modwpt( ___ ,Name,Value)
```


Description

wpt $=\operatorname{modwpt}(x)$ returns the terminal nodes for the maximal overlap discrete wavelet packet transform (MODWPT) for the 1-D real-valued signal, x.

Note: The output of the MODWPT is time-delayed compared to the input signal. Most filters used to obtain the MODWPT have a nonlinear phase response, which makes compensating for the time delay difficult. This is true for all orthogonal scaling and wavelet filters, except the Haar wavelet. It is possible to time-align the coefficients with the signal features, but the result is an approximation, not an exact alignment with the original signal. The MODWPT partitions the energy among the wavelet packets at each level. The sum of the energy over all the packets equals the total energy of the input signal. The output of MODWPT is useful for applications where you want to analyze the energy levels in different packets.

The MODWPT details (modwptdetails) are the result of zero-phase filtering of the signal. The features in the MODWPT details align exactly with features in the input signal. For a given level, summing the details for each sample returns the exact original
signal. The output of the MODWPT details is useful for applications that require timealignment, such as nonparametric regression analysis.
wpt $=$ modwpt (x, wname) returns the MODWPT using the orthogonal wavelet filter specified by the wname.
wpt $=$ modwpt ($x, 10$, hi) returns the MODWPT using the orthogonal scaling filter, lo, and wavelet filter, hi.
wpt $=$ modwpt (__ lev) returns the terminal nodes of the wavelet packet tree at positive integer level lev.
[wpt, packetlevs] = modwpt (__) returns a vector of transform levels corresponding to the rows of wpt.
[wpt, packetlevs,cfreq] = modwpt (__) returns the center frequencies of the approximate passbands corresponding to the rows of wpt.
[wpt, packetlevs,cfreq, energy] = modwpt (__) returns the energy (squared L2 norm) of the wavelet packet coefficients for the nodes in wpt.
[wpt, packetlevs,cfreq, energy, relenergy] = modwpt (__) returns the relative energy for the wavelet packets in wpt.
[___] = modwpt (___, , Name, Value) returns the MODWPT with additional options specified by one or more Name, Value pair arguments.

Examples

MODWPT Using Default Wavelet

Obtain the MODWPT of an electrocardiogram (ECG) signal using the default length 18 Fejer-Korovkin ('fk18') wavelet.
load wecg;
wpt $=$ modwpt(wecg);
wpt is a 16 -by-2048 matrix containing the sequency-ordered wavelet packet coefficients for the wavelet packet transform nodes. In this case, the nodes are at level 4. Each node corresponds to an approximate passband filtering of $\left[n f_{s} / 2^{5},(n+1) f_{s} / 2^{5}\right)$, where $n=$
$0, \ldots, 15$, and f_{s} is the sampling frequency. Plot the wavelet packet coefficients at node $(4,2)$, which is level 4 , node 2 .

```
plot(wpt(3,:))
title('Node 4 Wavelet Packet Coefficients')
```


MODWPT Using Daubechies Extremal Phase Wavelet with Two Vanishing Moments

Obtain the MODWPT of Southern Oscillation Index data with the Daubechies extremal phase wavelet with two vanishing moments ('db2').

```
load soi;
wsoi = modwpt(soi,'db2');
```

Verify that the size of the resulting transform contains 16 nodes. Each node is in a separate row.

```
size(wsoi)
```

ans =
1612998

MODWPT Using Scaling and Wavelet Filters

Obtain the MODWPT of an ECG waveform using the Fejer-Korovkin length 18 scaling and wavelet filters.

```
load wecg;
[lo,hi] = wfilters('fk18');
wpt = modwpt(wecg,lo,hi);
```


MODWPT Full Packet Tree and Passband Center Frequencies

Obtain the MODWPT and full wavelet packet tree of an ECG waveform using the default length 18 Fejer-Korovkin ('fk18') wavelet. Extract and plot the node coefficients at level 3, node 2.

```
load wecg;
[wpt,packetlevels,cfreq] = modwpt(wecg,'FullTree',true);
p3 = wpt(packetlevels==3,:);
plot(p3(3,:))
title('Level 3, Node 2 Wavelet Coefficients')
```

Level 3, Node 2 Wavelet Coefficients

Display the center frequencies at level 3.
cfreq(packetlevels==3,:)
ans =
0.0313
0.0938
0.1563
0.2188
0.2813
0.3438
0.4063

0.4688

MODWPT Energy and Relative Energy

Obtain and plot the MODWPT energy and relative energy of an ECG waveform.

```
load wecg;
[wpt,~,cfreq,energy,relenergy] = modwpt(wecg);
```

Show that the sum of the MODWPT energies is equal to the sum of the energy in the original signal. The difference between the total MODWPT energy and the signal energy is small enough to be considered insignificant.

```
sum(energy)-(bandpower(wecg)*length(wecg))
ans =
    3.6120e-09
```

Plot the MODWPT energy by node.

```
figure;
bar(1:16,energy);
xlabel('Node')
ylabel('Energy')
title('Energy by Node')
sprintf('Total power in passband is %.2f', energy(1))
ans =
Total power in passband is 200.84
```


Energy by Node

Plot the relative energy and show the percentage of signal energy in the first passband [0,5.6250].
figure;
bar(1:16, relenergy*100);
xlabel('Node');
ylabel('Percent Energy');
title('Energy Relative to Signal Energy by Node');
sprintf('Percentage of signal power in passband is \%.1f',(relenergy(1)*100))
ans =
Percentage of signal power in passband is 67.3

Time-Aligned MODWPT

Obtain the time-aligned MODWPT of two intermittent sine waves in noise. The sine wave frequencies are 150 Hz and 200 Hz . The data is sampled at 1000 Hz .

```
dt = 0.001;
t = 0:dt:1-dt;
x = cos(2*pi*150*t).*(t>=0.2 & t<0.4)+ sin(2*pi*200*t).*(t>0.6 & t<0.9);
y = x+0.05*randn(size(t));
[wpta,~,Falign] = modwpt(x,'TimeAlign',true);
[wptn,~,Fnon] = modwpt(x);
```

Compare the nonaligned and time-aligned time-frequency plots.

```
subplot(2,1,1);
contour(t,Fnon.*(1/dt), abs(wptn).^2);
grid on;
ylabel('Hz');
title('Time-Frequency Plot (Nonaligned)');
subplot(2,1,2)
contour(t,Falign.*(1/dt),abs(wpta).^2);
grid on;
xlabel('Time');
ylabel('Hz');
title('Time-Frequency Plot (Aligned)');
```


Input Arguments

x - Input signal
real-valued vector
Input signal, specified as a real-valued row or column vector. x must have at least two elements.

Data Types: double

wname - Analyzing wavelet filter

fk18 (default) |

Analyzing wavelet filter specified as a that corresponds to an orthogonal wavelet. If you specify the scaling (lo) and wavelet (hi) filters, modwpt ignores the wname input.

Valid orthogonal wavelet families begin with one of the following s, followed by an integer, N, for example, sym4. Note, however, that 'haar' is not followed by an integer.

- 'haar' - Haar wavelet, which is the same as Daubechies wavelet with one vanishing moment, 'db1'.
- 'dbN' - Daubechies wavelet with N vanishing moments
- 'symN' - Symlets wavelet with N vanishing moments
- ' coifN' - Coiflets wavelet with N vanishing moments
- 'fkN' - Fejer-Korovkin wavelet with N coefficients

To check if your wavelet is orthogonal, use wavemngr('type ', wname) and verify that it returns 1 as the wavelet type. To determine valid values for N, use waveinfo, for example, waveinfo('fk').

10 - Scaling filter

even-length real-valued vector
Scaling filter, specified as an even-length real-valued vector. 10 must satisfy the conditions necessary to generate an orthogonal scaling function. You cannot specify both the scaling-wavelet filters and the wname input.

hi - Wavelet filter

even-length real-valued vector
Wavelet filter, specified as an even-length real-valued vector. hi must satisfy the conditions necessary to generate an orthogonal wavelet. You cannot specify both the scaling-wavelet filters and the wname input.

lev - Transform level
 positive integer

Transform level, specified as a positive integer less than or equal to floor(log2(numel(x))).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Fulltree', true returns the full wavelet packet tree

```
'FullTree' - Full packet tree
false (default) | true
```

Option to return the full wavelet packet tree, specified as the comma-separated pair consisting of 'FullTree' and either false or true. If you specify false, then modwpt returns only the terminal (final-level) wavelet packet nodes. If you specify true, then modwpt returns the full wavelet packet tree down to the specified level.
Example: 'Fulltree', true

```
'TimeAlign ' - Signal time alignment
false (default) | true
```

Option to time align wavelet packet coefficients with signal features, specified as the comma-separated pair consisting of 'TimeAlign' and either true to time align or false to not align.

The scaling and wavelet filters have a time delay. Circularly shifting the wavelet packet coefficients in all nodes aligns the signal and wavelet coefficients in time. If you want to reconstruct the signal, such as by using imodwpt, do not shift the coefficients because time alignment is done during the inversion process.

Example: 'TimeAlign', true

Output Arguments

wpt - Wavelet packet transform

matrix
Wavelet packet tree, returned as a matrix with each row containing the sequencyordered wavelet packet coefficients. By default, wpt contains only the terminal level for the MODWPT. The default terminal level is either level 4 or floor (log2 (numel(x))), whichever is smaller. At level 4 , wpt is a 16 -by-numel(x) matrix. For the full tree, at level j, wpt is a $2^{j+2}-2$-by-numel (x) matrix, with each row containing the packet
coefficients by level and index. The approximate passband for the nth row of wpt at level j is $\left[\frac{n-1}{2^{(j+1)}}, \frac{n}{2^{(j+1)}}\right)$ cycles/sample, where $n=1,2, \ldots 2^{j}$.

packetlevs - Transform levels

vector

Transform levels, returned as a vector. The levels correspond to the rows of wpt. If wpt contains only the terminal level coefficients, packetlevs is a vector of constants equal to the terminal level. If wpt contains the full wavelet packet table, packetlevs is a vector with 2^{j} elements for each level, j. To select all the wavelet packet nodes at a particular level, use packetlevs with logical indexing.

cfreq - Center frequencies of passbands

vector
Center frequencies of the approximate passbands in the wpt rows, returned as a vector. The center frequencies are in cycles/sample. To convert the units to cycles/unit time, multiply cfreq by the sampling frequency.

energy - Energy of the wavelet packet coefficients

vector

Energy of the wavelet packet coefficients for the wpt nodes, returned as a vector. The sum of the energies (squared L2 norms) for the wavelet packets at each level equals the energy in the signal.

relenergy - Relative energy

vector

Relative energy for each level, returned as a vector. The relative energy is the proportion of energy in each wavelet packet by level, relative to the total energy of that level. The sum of relative energies in all packets at each level equals 1.

More About

Algorithms

The modwpt performs a discrete wavelet packet transform and produces a sequencyordered wavelet packet tree. Compare the sequency-ordered and normal (Paley)-ordered trees.

Sequency-Ordered Wavelet Packet Tree

Natural-Ordered Wavelet Packet Tree

References

[1] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK: Cambridge University Press, 2000.
[2] Walden, A.T., and A. Contreras Cristan. "The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events." Proceedings of the Royal Society of London A. Vol. 454, Issue 1976, 1998, pp. 2243-2266.

See Also
imodwpt | modwptdetails
Introduced in R2016a

modwptdetails

Maximal overlap discrete wavelet packet transform details

Syntax

```
w = modwptdetails(x)
w = modwptdetails(x,wname)
w = modwptdetails(x,lo,hi)
w = modwptdetails( ___,lev)
```

[w,packetlevs] = modwptdetails(
\qquad
[w, packetlevs,cfreq] = modwptdetails(
\qquad

```
[
```

\qquad

``` ] = modwptdetails(
``` \(\qquad\)
``` , Name, Value)
```


Description

w = modwptdetails(x) returns the maximal overlap discrete wavelet packet transform (MODWPT) details for the 1-D real-valued signal, x. The MODWPT details provide zero-phase filtering of the signal. By default, modwptdetails returns only the terminal nodes, which are at level 4 or at level floor $(\log 2($ numel $(x)))$, whichever is smaller.

Note: To decide whether to use modwptdetails or modwpt, consider the type of data analysis you need to perform. For applications that require time alignment, such as nonparametric regression analysis, use modwptdetails. For applications where you want to analyze the energy levels in different packets, use modwpt. For more information, see "Algorithms" on page 1-447
w = modwptdetails(x, wname) uses the orthogonal wavelet filter specified by the character vector wname.
w = modwptdetails(x,lo,hi) uses the orthogonal scaling filter, lo, and wavelet filter, hi.
w = modwptdetails(__ , lev) returns the terminal nodes of the wavelet packet tree at positive integer level lev.
[w,packetlevs] = modwptdetails(\qquad) returns a vector of transform levels corresponding to the rows of w.
[w, packetlevs,cfreq] = modwptdetails(__) returns, w, the center frequencies of the approximate passbands corresponding to the MODWPT details in .
\qquad] = modwptdetails(\qquad , Name, Value) returns the MODWPT with additional options specified by one or more Name, Value pair arguments.

Examples

MODWPT Details Using Default Wavelet

Obtain the MODWPT of an electrocardiogram (ECG) signal using the default length 18 Fejer-Korovkin ('fk18') wavelet and the default level, 4.

```
load wecg;
wptdetails = modwptdetails(wecg);
```

Demonstrate that summing the MODWPT details over each sample reconstructs the signal. The largest absolute difference between the original signal and the reconstruction is on the order of 10^{-11}, which demonstrates perfect reconstruction.

```
xrec = sum(wptdetails);
max(abs(wecg-xrec'))
ans =
```

 1.7903e-11

MODWPT Details for Two Sine Waves

Obtain the MODWPT details for a signal containing 100 Hz and 450 Hz sine waves. Each row of the modwptdetails output corresponds to a separate frequency band.

```
dt = 0.001;
fs = 1/dt;
t = 0:dt:1;
x = (sin(2*pi*100*t)+sin(2*pi*450*t));
```

```
[lo,hi] = wfilters('fk22');
wptdetails = modwptdetails(x,lo,hi);
```

Use modwpt to obtain the energy and center frequencies of the signal. Plot the energy in the wavelet packets. The fourth and fifteenth frequency bands contain most of the energy. Other frequency bands have significantly less energy. The frequency ranges of fourth and fifteenth bands are approximately $94-125 \mathrm{~Hz}$ and $438-469 \mathrm{~Hz}$, respectively.

```
[wpt,~,cfreqs,energy] = modwpt(x,lo,hi);
figure
bar(1:16,energy);
xlabel('Packet')
ylabel('Packet Energy')
title('Energy by Wavelet Packet')
```


Plot the power spectral density of the input signal.

```
pwelch(x,[],[],[],fs,'onesided');
title('Power Spectral Density of Input Signal')
```


Show that the MODWPT details have zero-phase shift from the 100 Hz input sine.

```
p4 = wptdetails(4,:);
plot(t,sin(2*pi*100*t).*(t>0.3 & t<0.7))
hold on
plot(t,p4.*(t>0.3 & t<0.7),'r')
legend('Sine Wave','MODWPT Details')
```


MODWPT Details for Noisy Sine Wave

Obtain the MODWPT details for a 100 Hz time-localized sine wave in noise. The sampling rate is 1000 Hz . Obtain the MODWPT at level 4 using the length 22 FejerKorovkin ('fk22') wavelet.

```
dt = 0.001;
t = 0:dt:1;
x = cos(2*pi*100*t).*(t>0.3 & t<0.7)+0.25*randn(size(t));
wptdetails = modwptdetails(x,'fk22');
p4 = wptdetails(4,:);
```

Plot the MODWPT details for level 4, packet number 4. The MODWPT details represent zero-phase filtering of the input signal with an approximate passband of $\left[3 \mathrm{Fs} / 2^{5}, 4 \mathrm{Fs} / 2^{5}\right.$), where Fs is the sampling frequency.

```
plot(t, cos(2*pi*100*t).*(t>0.3 & t<0.7));
hold on
plot(t,p4,'r')
legend('Sine Wave','MODWPT Details')
```


MODWPT Details Using Scaling and Wavelet Filters

Obtain the MODWPT details of an ECG waveform using the length 18 Fejer-Korovkin scaling and wavelet filters.

```
load wecg;
[lo,hi] = wfilters('fk18');
wpt = modwptdetails(wecg,lo,hi);
```


MODWPT Details for Full Packet Tree

Obtain the MODWPT details for the full wavelet packet tree of an ECG waveform. Use the default length 18 Fejer-Korovkin ('fk18') wavelet. Extract and plot the node coefficients at level 3, node 2.

```
load wecg;
[w,packetlevels] = modwptdetails(wecg,'FullTree',true);
p3 = w(packetlevels==3,:);
plot(p3(3,:))
title('Level 3, Node 2 MODWPT Details')
```

Level 3, Node 2 MODWPT Details

Input Arguments

x - Input signal

real-valued vector
Input signal, specified as a real-valued row or column vector. x must have at least two elements.

Data Types: double

wname - Analyzing wavelet filter

fk18 (default) | character vector

Analyzing wavelet filter, specified as a character vector that corresponds to an orthogonal wavelet.

Valid orthogonal wavelet families begin with one of the following character vectors, followed by an integer, N. For example, sym4.

- 'haarN' - Haar wavelet with N vanishing moments
- 'dbN' - Daubechies wavelet with N vanishing moments
- 'symN' - Symlets wavelet with N vanishing moments
- ' coifN' - Coiflets wavelet with N vanishing moments
- 'fkN' - Fejer-Korovkin wavelet with N coefficients

To check if your wavelet is orthogonal, use wavemngr('type', wname) and verify that it returns 1 as the wavelet type. To determine valid values for N, use waveinfo. For example, waveinfo('fk').

10 - Scaling filter

even-length real-valued vector
Scaling filter, specified as an even-length real-valued vector. 10 must satisfy the conditions necessary to generate an orthogonal scaling function. You can specify the lo and hi scaling-wavelet filter pair only if you do not specify wname.

hi - Wavelet filter
 even-length real-valued vector

Wavelet filter, specified as an even-length real-valued vector. hi must satisfy the conditions necessary to generate an orthogonal wavelet. You can specify the lo and hi scaling-wavelet filter pair only if you do not specify wname.

lev - Transform level

positive integer
Transform level, specified as a positive integer less than or equal to floor(log2(numel(x))).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Fulltree', true returns the full wavelet packet tree

'FullTree' - Option to return full packet tree details
 false (default) | true

Option to return full wavelet packet tree details, specified as the comma-separated pair consisting of 'FullTree' and either false or true. If you specify false, then modwptdetails returns details about only the terminal (final-level) wavelet packet nodes. If you specify true, then modwptdetails returns details about the full wavelet packet tree down to the default or specified level.

For the full wavelet packet tree, w is a $2^{j+1}-2$-by-numel (x) matrix. Each level, j, has 2^{j} wavelet packet details.

Output Arguments

w - Wavelet packet tree details
matrix
Wavelet packet tree details, returned as a matrix with each row containing the sequencyordered wavelet packet details for the terminal nodes. The terminal nodes are at level 4 or at level floor (log2 (numel $(x))$), whichever is smaller. The MODWPT details are zero-phase-filtered projections of the signal onto the subspaces corresponding to the wavelet packet nodes. The sum of the MODWPT details over each sample reconstructs the original signal.

For the default terminal nodes, w is a 2^{j}-by-numel (x) matrix. For the full packet table, at level j, wis a $2^{j+1}-2$-by-numel (x) matrix of sequency-ordered wavelet packet coefficients by level and index. The approximate passband for the nth row of w at level j is $\left[\frac{n-1}{2^{(j+1)}}, \frac{n}{2^{(j+1)}}\right)$ cycles per sample, where $n=1,2, \ldots, 2^{j}$.

packetlevs - Transform levels

vector
Transform levels, returned as a vector. The levels correspond to the rows of w. If w contains only the terminal level coefficients, packetlevs is a vector of constants equal
to the terminal level. If w contains the full wavelet packet tree of details, packetlevs is a vector with 2^{j-1} elements for each level, j. To select all the MODWPT details at a particular level, use packetlevs with logical indexing.

cfreq - Center frequencies of passbands

vector
Center frequencies of the approximate passbands in the w rows, returned as a vector. The center frequencies are in cycles per sample. To convert the units to cycles per unit time, multiply cfreq by the sampling frequency.

More About

Algorithms

The MODWPT details (modwptdetails) are the result of zero-phase filtering of the signal. The features in the MODWPT details align exactly with features in the input signal. For a given level, summing the details for each sample returns the exact original signal.

The output of the MODWPT (modwpt) is time delayed compared to the input signal. Most filters used to obtain the MODWPT have a nonlinear phase response, which makes compensating for the time delay difficult. All orthogonal scaling and wavelet filters have this response, except the Haar wavelet. It is possible to time align the coefficients with the signal features, but the result is an approximation, not an exact alignment with the original signal. The MODWPT partitions the energy among the wavelet packets at each level. The sum of the energy over all the packets equals the total energy of the input signal.

References

[1] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK: Cambridge University Press, 2000.
[2] Walden, A.T., and A. Contreras Cristan. "The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events." Proceedings of the Royal Society of London A. Vol. 454, Issue 1976, 1998, pp. 2243-2266.

See Also
imodwpt | modwpt
Introduced in R2016a

modwt

Maximal overlap discrete wavelet transform

Syntax

```
w = modwt(x)
w = modwt(x,wname)
w = modwt(x,Lo,Hi)
w = modwt( ___,lev)
w = modwt(___,'reflection')
```


Description

w = modwt (x) returns the maximal overlap discrete wavelet transform (MODWT) of the 1-D real-valued signal, x.
w = modwt (x, wname) uses the orthogonal wavelet, wname, for the MODWT.
w = modwt (x, Lo, Hi) uses the scaling filter, Lo, and wavelet filter, Hi, to compute the MODWT. These filters must satisfy the conditions for an orthogonal wavelet. You cannot specify Lo and Hi if you specify wname.
w = modwt (\qquad , lev) computes the MODWT down to the specified level, lev, using any of the arguments from previous syntaxes.
w = modwt (\qquad , 'reflection') computes the MODWT using reflection boundary handling. Other inputs can be any of the arguments from previous syntaxes. Before computing the wavelet transform, modwt extends the signal symmetrically at the right boundary to twice the signal length, [x flip(x)]. The number of wavelet and scaling coefficients that modwt returns is equal to twice the length of the input signal. By default, the signal is extended periodically.

Examples

MODWT Using Default Wavelet

Obtain the MODWT of an electrocardiogram (ECG) signal using the default sym4 wavelet down to the maximum level.

```
load wecg;
wtecg = modwt(wecg);
```

wtecg is 12 -by- 2048 matrix. The first eleven rows are the wavelet coefficients for scales 2^{1} to 2^{11}. The final row contains the scaling coefficients at scale 2^{11}. Plot the detail (wavelet) coefficients for scale 2^{3}.

```
plot(wtecg(3,:))
```

title('Level 3 Wavelet Coefficients')

Level 3 Wavelet Coefficients

MODWT Using Daubechies Extremal Phase Wavelet with Two Vanishing Moments

Obtain the MODWT of Southern Oscillation Index data with the ' db 2 ' wavelet down to the maximum level.

```
load soi;
wsoi = modwt(soi,'db2');
```


MODWT Using Scaling and Wavelet Filters

Obtain the MODWT of the Deutsche Mark - U.S. Dollar exchange rate data using the Fejer-Korovkin length 8 scaling and wavelet filters.

```
load DM_USD;
```

```
[Lo,Hi] = wfilters('fk8');
wdm = modwt(DM_USD,Lo,Hi);
```


MODWT to a Specified Level

Obtain the MODWT of an ECG signal down to scale 2^{4}, which corresponds to level four. Use the default 'sym4' wavelet.

```
load wecg;
```

wtecg $=$ modwt(wecg,4);
wtecg is a 5-by-2048 matrix. The row size is $\mathrm{L}+1$, where, in this case, the level (L) is 4 . The column size matched the number of input samples.

MODWT with Reflection Boundary

Obtain the MODWT of an ECG signal using reflection boundary handling. Use the default 'sym4' wavelet and obtain the transform down to level 4.

```
load wecg;
wtecg = modwt(wecg,4,'reflection');
```

wtecg has 4096 columns, which is twice the length of the input signal, wecg.

- "Wavelet Analysis of Financial Data"

Input Arguments

x - Input signal

real-valued vector
Input signal, specified as a row or column vector. x must have at least two elements.
By default, modwt computes the wavelet transform down to level floor (log2(length (x))) using the Daubechies least-asymmetric wavelet with four vanishing moments ('sym4') and periodic boundary handling.

Data Types: double

wname - Analyzing wavelet
'sym4' (default) | character vector

Analyzing wavelet, specified as a character vector that corresponds to an orthogonal wavelet. Valid orthogonal wavelet families begin with one of the following character vectors, followed by an integer, N, which indicates the number of vanishing moments, for example, symN. For 'fk', N is the number of coefficients.

- 'haar' - Haar wavelet
- 'db' - Daubechies wavelet
- 'sym' - Symlets wavelet
- 'coif' - Coiflets wavelet
- 'fk' - Fejer-Korovkin wavelet

To check if your wavelet is orthogonal, use wavemngr('type', wname) and verify that it returns 1 as the wavelet type. To determine valid values for N, use waveinfo, for example, waveinfo('db').

Lo - Scaling filter

even-length real-valued vector
Scaling filter, specified as an even-length real-valued vector. Lo must satisfy the conditions necessary to generate an orthogonal scaling function. You can specify Lo only if you do not specify wname.

Hi - Wavelet filter

even-length real-valued vector
Wavelet filter, specified as an even-length real-valued vector. Hi must satisfy the conditions necessary to generate an orthogonal wavelet. You can specify Hi only if you do not specify wname.

lev - Transform level

positive integer
Transform level, specified as a positive integer less than or equal to floor(log2(length(x))).

Output Arguments

w - Wavelet transform
matrix

Wavelet transform , returned as an $L+1$-by- N matrix containing wavelet coefficients and final-level scaling coefficients. L is the level of the MODWT. N is equal to the input signal length unless you specify 'reflection' boundary handling, in which case N is twice the length of the input signal. The k th row of w contains the wavelet coefficients for scale 2^{k} (wavelet scale $2^{(k-1)}$). The final, ($L+1$)th, row of w contains the scaling coefficients for scale 2^{L}.

More About

Algorithms

The standard algorithm for the MODWT implements the circular convolution directly in the time domain. This implementation of the MODWT performs the circular convolution in the Fourier domain. The wavelet and scaling filter coefficients at level j are computed by taking the inverse discrete Fourier transform (DFT) of a product of DFTs. The DFTs in the product are the signal's DFT and the DFT of the $j^{\text {th }}$ level wavelet or scaling filter.

Let H_{k} and G_{k} denote the length N DFTs of the MODWT wavelet and scaling filters, respectively. Let j denote the level and N denote the sample size.

The $\mathrm{j}^{\text {th }}$ level wavelet filter is defined by

$$
\frac{1}{N} \sum_{k=0}^{N-1} H_{j, k} e^{i 2 \pi n k / N}
$$

where

$$
H_{j, k}=H_{2^{j-1} k \bmod N} \prod_{m=0}^{j-2} G_{2^{m} k \bmod N}
$$

The $j^{\text {th }}$ level scaling filter is

$$
\frac{1}{N} \sum_{k=0}^{N-1} G_{j, k} e^{i 2 \pi n k / N}
$$

where

$$
G_{j, k}=\prod_{m=0}^{j-1} G_{2^{m} k \bmod N}
$$

References

[1] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK: Cambridge University Press, 2000.
[2] Percival, D. B., and H. O. Mofjeld. "Analysis of subtidal coastal sea level fluctuations using wavelets."Journal of the American Statistical Association. Vol. 92, pp 868880.

See Also

imodwt | modwtcorr | modwtmra | modwtvar | modwtxcorr

Introduced in R2015b

modwtcorr

Multiscale correlation using the maximal overlap discrete wavelet transform

Syntax

```
wcorr = modwtcorr(w1,w2)
wcorr = modwtcorr(w1,w2,wav)
[wcorr,wcorrci] = modwtcorr(___ )
[wcorr,wcorrci] = modwtcorr(___, conflevel)
[wcorr,wcorrci,pval] = modwtcorr(___)
[wcorr,wcorrci,pval,nj] = modwtcorr(___)
wcorrtable = modwtcorr( ___,'table')
[ ___] = modwt(___,'reflection')
modwtcorr(___)
```


Description

wcorr = modwtcorr(w1,w2) returns the wavelet correlation by scale for the maximal overlap discrete wavelet transforms (MODWTs) specified in w1 and w2. wcorr is an M -by- 1 vector of correlation coefficients, where M is the number of levels with nonboundary wavelet coefficients. If the final level has enough nonboundary coefficients, modwtcorr returns the scaling correlation in the final row of wcorr.
wcorr = modwtcorr(w1, w2, wav) uses the wavelet wav to determine the number of boundary coefficients by level.
[wcorr,wcorrci] = modwtcorr (__) returns in wcorrci the lower and upper 95\% confidence bounds for the correlation coefficients of wcorr, using any arguments from the previous syntaxes.
[wcorr,wcorrci] = modwtcorr(\qquad , conflevel) uses conflevel for the coverage probability of the confidence interval. conflevel is a real scalar strictly greater than 0 and less than 1 . If conflevel is unspecified or specified as empty, the coverage probability defaults to 0.95 .
[wcorr,wcorrci, pval] = modwtcorr (__) returns the p-values for the null hypothesis test that the correlation coefficient in wcorr is equal to zero. pval is an M -by- 2 matrix, where M is the number of levels with nonboundary wavelet coefficients. T
[wcorr, wcorrci, pval, nj] = modwtcorr(__) returns the number of nonboundary coefficients used in the computation of the correlation estimates by level, nj .
wcorrtable = modwtcorr(__ , 'table') returns an M-by-6 table with the correlation, confidence bounds, p-value, and adjusted p-value. The table also lists the number of nonboundary coefficients by level. The row names of the table wcorrtable designate the type and level of each estimate. For example, D1 designates that the row corresponds to a wavelet or detail estimate at level 1 and S6 designates that the row corresponds to the scaling estimate at level 6 . The scaling correlation is only computed for the final level of the MODWT and only when there are nonboundary scaling coefficients. You can specify the 'table' flag anywhere after the input transforms w1 and w2. You must enter the entire character vector 'table'. If you specify 'table', modwtcorr only outputs one argument.
[___] = modwt (___, 'reflection') reduces the number of wavelet and scaling coefficients at each scale by half before computing the correlation. Use this option only when you obtain the MODWT of w1 and w2 were obtained using the 'reflection' boundary condition. You must enter the entire character vector 'reflection'. If you added a wavelet named 'reflection' using the wavelet manager, you must rename that wavelet prior to using this option.
modwtcorr supports only unbiased estimates of the wavelet correlation. For these estimates, the algorithm must removed the extra coefficients obtained using the 'reflection' boundary condition. Specifying the 'reflection' option in modwtcorr is identical to first obtaining the MODWT of $w 1$ and $w 2$ using the default 'periodic' boundary handling and then computing the wavelet correlation estimates.
modwtcorr (__) with no output arguments plots the wavelet correlations by scale with lower and upper confidence bounds. By default, the coverage probability is 0.95 . Scales with NaNs for the confidence bounds and the scaling correlation are excluded.

Examples

Correlation by Scale

Find the correlation by scale for monthly DM-USD exhange rate returns from 1970 to 1998. The return data are log transformed. Use the Daubechies wavelet with two
vanishing moments ('db2') to obtain the MODWT down to level 6 . Then, obtain the correlation data.

```
load DM USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
wcorr = modwtcorr(wdm,wjy,'db2')
wcorr =
    0.5854
    0.5748
    0.6264
    0.4948
    0.3787
    0.9072
    0.7976
```

wcorr contains seven elements. The first six elements are the correlation coefficients for the wavelet (detail) levels one to six. The final element is the correlation for the scaling (lowpass) level six.

Multiscale Correlation

Obtain the MODWT of the Southern Oscillation Index and Truk Island daily pressure data sets. Tabulate the correlation between the two data sets by level.

```
load soi;
load truk;
wsoi = modwt(soi);
wtruk = modwt(truk);
wcorr = modwtcorr(wsoi,wtruk)
wcorr =
    0.1749
    0.2936
    0.0914
    0.0883
    0.2667
```

Show that the number of nonboundary coefficients, in this case, is less than the maximal length of the input. The MODWT is computed down to level thirteen, which is the maximal level for the length of the input. Level thirteen contains thirteen wavelet coefficient vectors and one scaling coefficient vector.

```
size(wsoi,1)
```

ans =

14

The multiscale correlations are computed only down to level ten because the levels after than do not contain nonboundary coefficients. For unbiased estimates, you must use nonboundary coefficients only.

```
numel(wcorr)
```

ans =
10

Confidence Intervals for Correlation

Obtain the MODWT of the monthly US-DM and US-JPY exchange return data from 1970 to 1998. The return data are log transformed. Use the Daubechies wavelet with two degrees of freedom ('db2') and obtain wavelet and obtain the MODWT of each series down to level six. Obtain the correlation estimates by scale and the 95% confidence intervals.

```
load DM_USD
load JY_U_USD
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
[wcorr,wcorrci] = modwtcorr(wdm,wjy,'db6');
```

```
[wcorr wcorrci]
ans =
\begin{tabular}{lll}
0.5855 & 0.4780 & 0.6756 \\
0.5753 & 0.4139 & 0.7017 \\
0.6257 & 0.4007 & 0.7796 \\
0.5578 & 0.1661 & 0.7974 \\
0.7202 & 0.1657 & 0.9287
\end{tabular}
```

The width of the confidence interval increases as you go down in level.

Confidence Intervals with 0.99 Coverage Probability

Specify the coverage probability for the confidence intervals. Obtain the 99% confidence intervals for the US-DM and US-JY exchange returns.

```
load DM_USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
[wcorr,wcorrci] = modwtcorr(wdm,wjy,'db2',0.99);
[wcorr wcorrci]
```

ans =

0.5854	0.4407	0.7005
0.5748	0.3557	0.7340
0.6264	0.3169	0.8153
0.4948	-0.0646	0.8176
0.3787	-0.5191	0.8792
0.9072	-0.3006	0.9975
0.7976	-0.6227	0.9941

P-values for Correlation

Return p-values for the test of zero correlation by scale. Obtain the MODWT of the DMUSD and JY-USD exchange return data down to level six using the Daubechies wavelet with two degrees of freedom ('db2') wavelet. Compute the correlation by scale and return the p-values.

```
load DM USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
[wcorr,wcorrci,pval] = modwtcorr(wdm,wjy,'db2');
format longe
pval
format
pval =
\begin{tabular}{ll}
\(2.694174887029594 \mathrm{e}-17\) & \(4.889927419958712 \mathrm{e}-16\) \\
\(7.125460513473891 \mathrm{e}-09\) & \(6.466355415977556 \mathrm{e}-08\) \\
\(7.012389783536512 \mathrm{e}-06\) & \(4.242495819039590 \mathrm{e}-05\) \\
\(2.258540027996926 \mathrm{e}-02\) & \(1.024812537703605 \mathrm{e}-01\) \\
\(2.805930327935258 \mathrm{e}-01\) & \(7.275376493146417 \mathrm{e}-01\) \\
\(3.348079529469842 \mathrm{e}-02\) & \(1.215352869197552 \mathrm{e}-01\) \\
\(1.059217509938027 \mathrm{e}-01\) & \(3.204132967562530 \mathrm{e}-01\)
\end{tabular}
```

The first column contains the p-value and the second column contains the adjusted p value based on the false discovery rate.

Multiscale Correlation in Tabular Form

Output results from modwtcorr in tabular form. Obtain the MODWT of the DM-USD and JY-USD exchange returns down to level six using the Daubechies wavelet with two degrees of freedom ('db2'). Output the results in a table.

```
load DM_USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
corrtable = modwtcorr(wdm,wjy,'db2','table')
```

corrtable =
NJ Lower Rho Upper Pvalue AdjustedPvalue

| D1 | 344 | 0.47797 | 0.58542 | 0.67561 | $2.6942 \mathrm{e}-17$ |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 4.8899 \mathrm{e}-16$

D2 338
$0.41329 \quad 0.57483$
$0.70129 \quad 7.1255 \mathrm{e}-09$
6.4664e-08

D3	326	0.40163	0.62641	0.78001	$7.0124 \mathrm{e}-06$	$4.2425 \mathrm{e}-05$
D4	302	0.080255	0.4948	0.76342	0.022585	0.10248
D5	254	-0.32954	0.37865	0.81417	0.28059	0.72754
D6	158	0.12469	0.90716	0.99393	0.033481	0.12154
S6	158	-0.28573	0.79761	0.98601	0.10592	0.32041

Correlation with Reflection Boundary Conditions

Obtain multiscale correlation estimates when using 'reflection' boundary handling. Obtain the MODWT of the Southern Oscillation Index and Truk Islands pressure data sets using 'reflection' boundary handling for both data sets.

```
load soi
load truk
wsoi = modwt(soi,'fk4',6,'reflection');
wtruk = modwt(truk,'fk4',6,'reflection');
corrtable = modwtcorr(wsoi,wtruk,'fk4',0.95,'reflection','table')
```

corrtable =

	NJ	Lower	Rho	Upper	Pvalue	AdjustedPva
D1	12995	0.16942	0.19294	0.21624	1.5466e-55	$2.8071 \mathrm{e}-54$
D2	12989	0.21426	0.24683	0.27885	2.7037e-46	2.4536e-45
D3	12977	0.057885	0.10623	0.15407	$1.789 \mathrm{e}-05$	6.494e-05
D4	12953	0.048034	0.11645	0.18378	0.00088579	0.0026795
D5	12905	0.13281	0.2272	0.3175	3.7566e-06	1.7046e-05
D6	12809	-0.019835	0.1182	0.25181	0.093044	0.24125
S6	12809	0.26664	0.39003	0.50084	8.8066e-09	5.328e-08

Plot Correlation with Confidence Intervals

Plot the multiscale correlation of the DM-USD and JY-USD exchange returns down to level six. Use modwtcorr with no output arguments.
load DM USD;
load JY_USD;
wdm = modwt(DM_USD, 'db2',6);
$w j y=\operatorname{modwt}\left(J Y-U S D,{ }^{\prime} d b 2 ', 6\right) ;$
modwtcorr(wdm,wjy,'db2')

Correlation by Scale -- Wavelet Coefficients

- "Wavelet Cross-Correlation for Lead-Lag Analysis"
- "Wavelet Analysis of Financial Data"

Input Arguments

w1 - MODWT transform of signal 1

matrix

MODWT transform of signal 1, specified as a matrix. w1 is the output of modwt. It must be the same size and must have been obtained using the same analyzing wavelet.

Data Types: double

w2 - MODWT transform of signal 2

matrix
MODWT transform of signal 2, specified as a matrix. w2 is the output of modwt. It must be the same size and must have been obtained using the same analyzing wavelet.

```
wav - Wavelet
'sym4' (default)| character vector | positive even scalar
```

Wavelet, specified as a character vector indicating a valid wavelet name or as a positive even scalar indicating the length of the wavelet and scaling filters. wav must be the same wavelet and length used to obtain the MODWTs of w1 and w2. For a list of valid wavelets, see modwt. If unspecified or specified as an empty, [], wav defaults to the symlets wavelet with four degrees of freedom, ' sym4'.

conflevel - Confidence level

0.95 (default) | positive scalar less than 1

Confidence level, specified as a positive scalar less than 1 . conflevel determines the coverage probability of the confidence intervals in wcorrci and in the table, if you specify 'table' as an input. If unspecified, or if specified as empty, [], conflevel defaults to 0.95 .

Output Arguments

wcorr - Correlation coefficients by scale

vector
Correlation coefficients by scale, returned as a vector. wcorr is an M-by-1 vector of correlation coefficients, where M is the number of levels with nonboundary wavelet coefficients. modwtcorr returns correlation estimates only where there are nonboundary coefficients. This condition is satisfied when the transform level is not greater than floor $(\log 2(N /(L-1)+1))$, where N is the length of the original signal and L is the filter length. If the final level has enough nonboundary coefficients, modwtcorr returns the scaling correlation in the final row of wcorr. By default, modwtcorr uses the symlet wavelet with four degrees of freedom 'sym4' to determine the boundary coefficients.

wcorrci - Confidence intervals by scale

matrix
Confidence intervals by scale, returned as a matrix. The matrix is of size M-by- 2 , where M is the number of levels with nonboundary wavelet coefficients. The first column contains the lower confidence bound and the second column contains the upper confidence bound. The conflevel determines the coverage probability.

Confidence bounds are computed using Fisher's Z-transformation. The standard error of Fisher's Z statistic is the square root of ($N-3$). In this case, N is the equivalent number of coefficients in the critically sampled discrete wavelet transform (DWT), floor (size (w1,2)/2^LEV), where LEV is the level of the wavelet transform. modwtcorr returns NaNs for the confidence bounds when N^{-3} is less than or equal to zero.

pval - P-values for null hypothesis test

matrix
P-values for null hypothesis test, returned as a matrix. pval is an M-by- 2 matrix.

- The first column of pval is the p-value computed using the standard t-statistic test for a correlation coefficient of zero.
- The second column of pval contains the adjusted p-value using the false discovery procedure of Benjamini \& Yekutieli under arbitrary dependence assumptions.

The degrees of freedom, $(N-2)$, for the t-statistic are determined by the equivalent number of coefficients in the critically sampled DWT, floor (size (w1,2)/2^LEV), where LEV is the levels of the wavelet transform. modwtcorr returns NaNs when N^{-3} is less than or equal to zero.

nj - Number of nonboundary coefficients

vector
Number of nonboundary coefficients by scale, returned as a vector.

wcorrtable - Correlation table

table
Correlation table, returned as a MATLAB table. The table contains six variables:

- NJ - Number of nonboundary coefficients by level.
- Lower - Lower confidence bound for the coverage probability specified by conflevel.
- Rho - Correlation coefficient.
- Upper - Upper confidence bound for the coverage probability specified by conflevel.
- Pvalue - P-value for hypothesis test. The null hypothesis is that the correlation coefficient is equal to zero.
- AdjustedPvalue - P-value adjusted for multiple comparisons. The p-values are adjusted using false discovery rate under dependency assumptions.

References

[1] Percival, D. B., and Walden, A. T. Wavelet Methods for Time Series Analysis. Cambridge, U.K: Cambridge University Press, 2000.
[2] Whitcher, B., P. Guttorp, and D. B. Percival. "Wavelet analysis of covariance with application to atmospheric time series." Journal of Geophysical Research, Vol. 105, 2000, pp. 14941-14962.

See Also

imodwt | modwt | modwtmra | modwtvar | modwtxcorr

Introduced in R2015b

modwtmra

Multiresolution analysis based on MODWT

Syntax

```
mra = modwtmra(w)
mra = modwtmra(w,wname)
mra = modwtmra(w,Lo,Hi)
mra = modwtmra(___,'reflection')
```


Description

$\mathrm{mra}=$ modwtmra(w) returns the multiresolution analysis (MRA) of the maximal overlap discrete wavelet transform (MODWT) matrix, w. The MODWT matrix, w, is the output of the modwt function.
mra $=$ modwtmra(w, wname) constructs the MRA using the wavelet corresponding to wname. The wname wavelet must be the same wavelet used to obtain the MODWT.
$m r a=$ modwtmra(w, Lo, Hi) constructs the MRA using the scaling filter Lo and wavelet filter Hi. The Lo and Hi filters must be the same filters used to obtain the MODWT.
mra $=$ modwtmra \qquad , 'reflection') uses the reflection boundary condition in the construction of the MRA using any of the arguments from previous syntaxes. If you specify 'reflection', modwtmra assumes that the length of the original signal is one half the number of columns in the input coefficient matrix.

Examples

Perfect Reconstruction with the MODWTMRA

Obtain the MODWTMRA of a simple time-series signal and demonstrate perfect reconstruction.

Create a time-series signal

```
t = 1:10;
x =sin(2*pi*200*t);
```

Obtain the MODWT and the MODWTMRA and sum the MODWTMRA rows.

```
m = modwt(x);
mra = modwtmra(m);
xrec = sum(mra);
```

Use the maximum of the absolute values to show that the difference between the original signal and the reconstruction is extremely small. The largest absolute value is on the order of 10^{-25}, which demonstrates perfect reconstruction.

```
max(abs(x-xrec))
```

ans =

$5.5738 \mathrm{e}-25$

MRA Using Non-Default Wavelet

Construct an MRA of an ECG signal down to level four using the 'db2' wavelet.

```
load wecg;
lev = 4;
wtecg = modwt(wecg,'db2',lev);
mra = modwtmra(wtecg,'db2');
```

Plot the ECG waveform and the MRA.

```
subplot(6,1,1)
plot(wecg)
    for kk = 2:lev+2
        subplot(6,1,kk)
        plot(mra(kk-1,:))
    end
```


MRA Using the Default Wavelet

Construct a multiresolution analysis for the Southern Oscillation Index data. The sampling period is one day. Plot the level eight details corresponding to a scale of 2^{8} days. The details at this scale capture oscillations on a scale of approximately one year.

```
load soi
wtsoi = modwt(soi);
mrasoi = modwtmra(wtsoi);
plot(mrasoi(8,:))
title('Level 8 Details')
```


MRA Using Minimum Bandwidth Scaling and Wavelet Filters

Obtain the MRA for the Deutsch Mark - U.S. Dollar exchange rate data using the minimum bandwidth scaling and wavelet filters with four coefficients.

```
load DM_USD;
Lo = [0.4801755, 0.8372545, 0.2269312, -0.1301477];
Hi = qmf(Lo);
wdm = modwt(DM_USD,Lo,Hi);
mra = modwtmra(wdm,Lo,Hi);
```


MRA Using Reflection Boundary

Obtain the MRA for an ECG signal using 'reflection' boundary handling.

```
load wecg;
wtecg = modwt(wecg,'reflection');
mra = modwtmra(wtecg,'reflection');
```

Show that the number of columns in the MRA is equal to the number of elements in the original signal.

```
isequal(size(mra,2),numel(wecg))
```

ans =
logical
1

Input Arguments

w - MODWT transform

matrix
Maximal overlap discrete wavelet transform, specified as a matrix. w is the output of modwt.

The input w is an $L+1$-by- N matrix containing the MODWT of an N-point input signal down to level L. By default, modwtmra assumes that you obtained the MODWT using the symlet wavelet with four vanishing moments, 'sym4', and using periodic boundary handling.

Example:

Data Types: double

wname - Synthesis wavelet

'sym4' (default) | character vector

Synthesis wavelet, specified as a character vector. The synthesis wavelet must be the same wavelet used to obtain the MODWT with the modwt function.

Lo - Scaling filter

even-length real-valued vector

Scaling filter, specified as an even-length real-valued vector. You can specify Lo only if you do not specify wname. Lo must be the same scaling filter used to obtain the MODWT with the modwt function.

Hi - Wavelet filter

even-length real-valued vector
Wavelet filter, specified as an even-length real-valued vector. You can specify Hi only if you do not specify wname. Hi must be the same wavelet filter used to obtain the MODWT with the modwt function.

Output Arguments

mra - Multiresolution analysis

matrix

Multiresolution analysis, returned as a matrix. By default, the mra is the same size as the input transform matrix w . If you specify reflection boundary handling, then mra has one half the number of columns as the input matrix w.

The output mra is an $L+1$-by- N matrix. The $k^{\text {th }}$ row of mra contains the details for the $k^{\text {th }}$ level. The $(L+1)^{\text {th }}$ row of mra contains the $L^{\text {th }}$ level smooth.

References

[1] Percival, D. B., and Walden, A. T. Wavelet Methods for Time Series Analysis. Cambridge, U.K: Cambridge University Press, 2000.
[2] Whitcher, B., P. Guttorp, and D. B. Percival. "Wavelet analysis of covariance with application to atmospheric time series." Journal of Geophysical Research, Vol. 105, 2000, pp. 14941-14962.

See Also

imodwt | modwt

Introduced in R2015b

modwtvar

Multiscale variance of maximal overlap discrete wavelet transform

Syntax

```
wvar = modwtvar(w)
wvar = modwtvar(w,wname)
[wvar,wvarci] = modwtvar(___)
[___] = modwtvar(w,wname,___,conflevel)
[___] = modwtvar(w,wname,___, Name,Value,)
[wvar,wvarci,nj] = modwtvar(w,wname, ___)
wvartable = modwtvar(w,wname,'table')
modwtvar(
```

\qquad

Description

wvar = modwtvar(w) returns unbiased estimates of the wavelet variance by scale for the maximal overlap discrete wavelet transform (MODWT). The default wavelet type is sym4.
wvar = modwtvar(w, wname) uses the wavelet wname to determine the number of boundary coefficients by level for unbiased estimates.
[wvar,wvarci] = modwtvar(___) returns the 95% confidence intervals for the variance estimates by scale.
[___] = modwtvar(w, wname, ___ , conflevel) uses conflevel for the coverage probability of the confidence interval.
[] = modwtvar(w,wname, \qquad , Name, Value,) returns wavelet variance with additional options specified by one or more Name, Value pair arguments.
[wvar,wvarci,nj] = modwtvar(w,wname, \qquad) returns the number of coefficients used to form the variance and confidence intervals by level.
wvartable = modwtvar(w, wname, 'table'), where 'table' returns a MATLAB table, wvartable, containing the number of MODWT coefficients by level, the confidence boundaries, and the variance estimates. You can place 'table' anywhere after input w, except between the name and value of another Name, Value pair.
modwtvar(\qquad) with no output arguments plots the wavelet variances by scale with lower and upper confidence bounds. The scaling variance is not included in the plot because the scaling variance can be much larger than the wavelet variances.

Examples

Wavelet Variance Using Default Wavelet

Obtain the MODWT of the Southern Oscillation Index data using the default symlets wavelet with 4 vanishing moements. Compute the unbiased estimates of the wavelet variance by scale.

```
load soi
wsoi = modwt(soi);
wvar = modwtvar(wsoi)
```

wvar =
0.3568
0.9026
1.1576
1.0952
0.9678
0.5478
0.6353
1.9570
0.8398
0.8247

Wavelet Variance Using Specified Wavelet

Obtain the MODWT of the Southern Oscillation Index data using the Daubechies wavelet with 2 vanishing moments ('db2'). Compute the unbiased estimates of the wavelet variance by scale.

```
load soi
wsoi = modwt(soi,''db2');
wvar = modwtvar(wsoi,'db2')
wvar =
    0.4296
    0.9204
    1.1370
    1.0847
    0.9255
    0.5932
    0.7630
    1.6672
    0.8048
    0.7555
    0.2095
    0.0377
```


Variance Estimates and Confidence Intervals Using MODWTVAR

Obtain the MODWT of the Nile River minimum level data using the Fejer- Korovkin wavelet with eight coefficients down to level five. Use modwtvar to obtain and plot the variance estimates and 95% confidence intervals.

```
load nileriverminima;
wtnile = modwt(nileriverminima,'fk8',5);
[wnilevar,wvarci] = modwtvar(wtnile,'fk8');
errlower = (wnilevar-wvarci(:,1));
errupper = (wvarci(:,2)-wnilevar);
errorbar(1:5,wnilevar(1:5),errlower(1:5),...
    errupper(1:5),'ko','markerfacecolor','k')
hold on
title('Wavelet Variance by Scale of Nile River Levels','fontsize',14);
ylabel('Variance');
xlabel('Time (in years)');
ax = gca;
ax.XTick = [1:5];
ax.XTickLabel = {'2','4','8','16','32'};
hold off
```


Wavelet Confidence Intervals

Show how different confidence level values affect the width of the confidence intervals. An increased confidence level value increases the confidence interval width.

Obtain the MODWT of the Southern Oscillation Index data using the Fejer-Korovkin wavelet with eight coefficients.

```
load soi;
wsoi = modwt(soi,'fk8');
```

Obtain the width of the.90, .95 , and .99 confidence intervals for each level.

```
[~,wvarci90] = modwtvar(wsoi,'fk8',0.90);
```

```
w90 = wvarci90(:,2)-wvarci90(:,1);
[~,wvarci95] = modwtvar(wsoi,'fk8',0.95);
w95 = wvarci95(:,2)-wvarci95(:,1);
[~,wvarci99] = modwtvar(wsoi,'fk8',0.99);
w99 = wvarci99(:,2)-wvarci99(:,1);
```

Compare the three columns. The first column shows the .90 confidence level values, the second the .95 values, and the third the .99 values. Each row is the width of the interval at each wavelet scale. You can see that the width of the confidence interval increases with larger confidence level values.

```
[w90,w95,w99]
```

ans =

0.0195	0.0233	0.0306
0.0739	0.0880	0.1158
0.1347	0.1606	0.2113
0.1798	0.2145	0.2826
0.2304	0.2751	0.3634
0.1825	0.2184	0.2900
0.2858	0.3435	0.4613
1.5445	1.8757	2.5837
1.0625	1.3262	1.9551
2.8460	3.9883	7.8724

Compare Chi2Eta2 and Gaussian Confidence Intervals

Specify non-default confidence methods using name-value pairs to compare the width of their confidence levels. Note that for Gaussian confidence level intervals, it is possible to obtain negative lower confidence bounds.

Obtain the MODWT of the Southern Oscillation Index data using the Fejer-Korovkin wavelet with eight coefficients.

```
load soi;
wsoi = modwt(soi,'fk8');
```

Use the Chi2Eta and Gaussian confidence methods to obtain the variances and confidence interval bounds for each method.

```
[wvar_c,wvarci_c] = modwtvar(wsoi,'fk8',[],'ConfidenceMethod','chi2eta1');
```

```
[wvar_g,wvarci_g] = modwtvar(wsoi,'fk8',[],'ConfidenceMethod','gaussian');
```

Compute the upper and lower errors for each confidence interval and plot the results. Note that the Gaussian intervals are slightly shifted to enable better visualization.

```
errlower_c = wvar_c-wvarci_c(:,1);
errupper_c = wvarci_c(:,2)-wvar_c;
errlower_g = wvar_g(:,1)-wvarci_g(:,1);
errupper_g = wvarci_g(:,2)-wvar_g;
errorbar(1:10,wvar_c(1:10),errlower_c(1:10),...
    errupper_c(1:10),'ko','markerfacecolor','b')
hold on;
xoffset = (1.3:10.3);
errorbar(xoffset,wvar_g(1:10),errlower_g(1:10),\ldots
    errupper_g(1:10),'ro','markerfacecolor','r')
title('Wavelet Chi2Eta2 vs. Gaussian Confidence Intervals','fontsize',14);
ylabel('Variance');
xlabel('Level')
ax = gca;
ax.XTick = [1:10];
legend('Chi2Eta','Gaussian','Location','northwest');
hold off
```

Wavelet Chi2Eta2 vs. Gaussian Confidence Intervals

Compare Number of Coefficients for Unbiased and Biased Variance Estimates

Compare the number of coefficients for unbiased and biased wavelet variance estimates. For the unbiased (default) estimates, the number of nonboundary coefficients decreases by scale. For biased estimates, the number of coefficients matches the number of input rows and is constant for every scale.

Obtain the MODWT of the Southern Oscillation Index data using the Fejer-Korovkin wavelet with eight coefficients. Compute the unbiased and biased estimates of the wavelet variance down to level ten. The number of coefficients used in the unbiased estimates decrease by scale.

```
wsoi = modwt(soi,'fk8');
[wvar_unb,wvarci_unb,nj_unb] = modwtvar(wsoi,'fk8');
[wvar_b,wvarci_b,nj_b] = modwtvar(wsoi,'fk8',[],'EstimatorType','biased');
[nj_unb(1:10),nj_b(1:10)]
ans =
\begin{tabular}{rr}
12991 & 12998 \\
12977 & 12998 \\
12949 & 12998 \\
12893 & 12998 \\
12781 & 12998 \\
12557 & 12998 \\
12109 & 12998 \\
11213 & 12998 \\
9421 & 12998 \\
5837 & 12998
\end{tabular}
```


Table of Wavelet Variance Estimates Using Gaussian Confidence Intervals

Compute the MODWT of the Southern Oscillation Index data using the Fejer- Korovkin wavelet with eight coefficients. Compute a variance table for the data.

```
load soi;
wsoi = modwt(soi,'fk8');
[wvartable] = modwtvar(wsoi,'fk8',0.90,'ConfidenceMethod','Gaussian',...
    table')
wvartable =
```

\qquad

```
Lower
                                    Variance
                                    Upper
```

\qquad

```
            12991
            0.3291
                0.33848
            0.34786
            D1 }129
                12977
            0.87172
            0.9034
                                    0.93508
    D2
            D3 12949
            D3 12949
            1.1041
            1.1628
            1.2216
                            1.0204
                            1.0933
                            1.1662
            12893
            12781
            0.8833
            0.98255
                            1.0818
                            D5
    D6 12557
            12557 0.47178
            0.54152
                                0.61125
    D7 12109
            0.41916
            0.57934
        0.73951
            D8 11213
            0.33639
            2.055
            3.7736
    D9 9421 0.4752 0.83369 1.1922
    D9 llllll
    D9 9421 0.4752 0.83369 1.1922
```

The resulting table contains the number of nonboundary coefficients, the lower and upper conficence level bounds, and the variance estimate for each level.

- "Wavelet Analysis of Financial Data"

Input Arguments

w - MODWT transform matrix
 matrix

MODWT transform, specified as a matrix. w is the output of modwt.

Data Types: double

wname - Wavelet

'sym4' (default) | character vector | positive even scalar
Wavelet, specified as a character vector corresponding to a valid wavelet, or as a positive even scalar indicating the length of the wavelet and scaling filters. The wavelet filter length must match the length used in the MODWT of the input.

If you use Name, Value pairs arguments or the 'table' syntax and you did not specify a wname, you must use [] as the second argument.

conflevel - Confidence level

0.95 (default) | real scalar greater than 0 and less than 1

Confidence level, specified as a real scalar value greater than 0 and less than 1 . The confidence level determines the coverage probability of the confidence intervals. The confidence levels are also shown in wvartable, if you specify 'table' as an input.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: 'EstimatorType', 'biased ' specifies a biased estimator.

'EstimatorType' - Estimator
 'unbiased' (default) | 'biased'

Type of estimator used for variance estimates and confidence bounds, specified as the comma-separated pair consisting of 'EstimatorType' and one of these values.

- 'unbiased' - Unbiased estimator, which identifies and removes boundary coefficients prior to computing the variance estimates and confidence bounds. Unbiased estimates are used more frequently for wavelet variance computations.
- 'biased' - Biased estimator, which uses all coefficients to compute the variance estimates and confidence bounds.
'ConfidenceMethod' - Confidence method
'chi2eta3' (default) | 'chi2eta1' | 'gaussian'
Confidence method used to compute the confidence intervals, specified as the commaseparated pair consisting of 'ConfidenceMethod ' and one of these values:

```
'chi2eta3' Chi-square probability density method three, which
    determines the degrees of freedom.[1].
'chi2eta1' Chi-square probability density method one, which
    determines the degrees of freedom [1].
'gaussian' Gaussian method [1]. This method can result in negative
    lower bounds.
```

See "Algorithm" on page 1-484 for information on each of these confidence methods.

```
'Boundary' - Boundary condition
'periodic' (default)| 'reflection'
```

Boundary condition used to compute the variance estimates and confidence bounds, specified as the comma-separated pair consisting of 'Boundary ' and one of these values:

$$
\begin{array}{ll}
\text { 'periodic ' } & \text { Periodic boundary handling, which does } \\
\text { not change the original signal before } \\
\text { computing the MODWT. If modwt uses } \\
\text { periodic boundary handling, you must } \\
\text { specify 'Boundary ' , 'periodic ' for } \\
\text { modwtvar to obtain a correct estimate. }
\end{array}
$$

Reflection boundary handling. If the MODWT uses reflection boundary handling, you must also specify 'Boundary', 'reflection' for modwtvar to obtain a correct unbiased estimate. The MODWT, with reflection boundary handling, extends the original signal symmetrically at the right boundary to twice the signal length. The MODWTVAR algorithm has to know about this extended signal to calculate the correct unbiased estimate.
For biased estimators, all the coefficients are used to form the variance estimates and confidence intervals regardless of the boundary handling.

Output Arguments

wvar - Wavelet variance estimates
matrix

Wavelet variance estimates, returned as vector. The number of elements in wvar depends on the number of scales in the input matrix and, for unbiased estimates, on the wavelet length. For the unbiased case, modwtvar returns estimates only where nonboundary coefficients exist. This condition is satisfied when the transform level is not greater than floor $(\log 2(N /(L-1)+1))$, where N is the input signal length and L is the length of the wavelet filter. The number of biased estimates equals the input signal length. If the final level has sufficient nonboundary coefficients, modwtvar returns the scaling variance in the final element of wvar.

wvarci - Confidence intervals for each variance estimate
 matrix

Confidence bounds, expressed as upper and lower confidence bounds, for the variance estimates in wvar, returned as a matrix. The default is 95% confidence bounds, but you can use a different value using the conflevel input argument. The confidence bounds matrix is M-by- 2 , where M is the number of levels. For unbiased estimates, the number of levels is limited by the number of nonboundary coefficients. For biased
estimates, all levels are used. The first column of the confidence interval matrix contains the lower confidence bound and the second column contains the upper confidence bound. By default, modwtvar calculates the confidence intervals using the chi-square probability density, with the equivalent degrees of freedom estimated using the 'Chi2Eta3' confidence method.

nj - Number of coefficients by level

vector

Number of nonboundary coefficients by scale, returned as a vector. For unbiased estimates, $n j$ is the number of nonboundary coefficients and decreases by level. For biased estimates, nj is a vector of constants equal to the number of columns in the input matrix.

wvartable - Variance table

table
Variance table, returned as a MATLAB table. The four variables in the table are:

- NJ - Number of MODWT coefficients by level. For biased estimates, NJ is the number of coefficients in the MODWT. For unbiased estimates, NJ is the number of nonboundary coefficients.
- Lower - Lower confidence bound for the variance estimate.
- Variance - Variance estimate by level.
- Upper - Upper confidence bound for the variance estimate.

The row names of wvartable indicate the type and level of each estimate. For example, D1 indicates that the row corresponds to a wavelet or detail estimate at level 1. S6 indicates that the row corresponds to the scaling estimate at level 6 . The scaling variance is computed for the final level of the MODWT. For unbiased estimates, modwtvar computes the scaling variance only when nonboundary scaling coefficients exist.

More About

Algorithms

The following expressions define the variance and confidence methods used in the MODWTVAR. The variables are

- N_{j} - Number of coefficients at level j
- v^{2} - Variance
- j - Level
- $W_{j, t}$ - Wavelet coefficients

The variance estimate is

$$
\hat{v}_{j}^{2}=\frac{1}{N_{j}} \sum_{t=0}^{N_{\dot{j}}-1} W_{j, t}^{2}
$$

The degrees of freedom for the Chi2Eta1 (chi2eta1) method are defined as

$$
\eta_{1}=\frac{N_{j} \hat{v}_{j}^{4}}{\hat{A}_{j}}
$$

where

$$
\hat{A}_{j}=\frac{1}{2} \int_{-1 / 2}^{1 / 2}\left[\hat{S}_{j}^{(p)}(f)\right]^{2} d f
$$

In this equation, $\hat{S}_{j}^{(p)}$ is the spectral density function estimate of the wavelet coefficients at level j.

The chi-square statistic is

$$
\frac{\eta_{1} N_{j} \hat{v}_{j}^{2}}{v_{j}^{2}} \sim X_{\eta_{1}}^{2}
$$

The degrees of freedom for the Chi2Eta3 (chi2eta3) method are defined as

$$
\eta_{3}=\max \left(\frac{N_{j}}{2^{j}}, 1\right)
$$

The chi-square statistic is

$$
\frac{\eta_{3} N_{j} \hat{v}_{j}^{2}}{v_{j}^{2}} \sim \mathrm{X}_{\eta_{3}}^{2}
$$

For the Gaussian method, the statistic

$$
\frac{N_{j}^{1 / 2}\left(\left(v_{j}^{2}-v_{j}^{2}\right)\right)}{\left(2 A_{j}\right)^{1 / 2}}
$$

is distributed as $N(0,1)$. The variable \hat{A}_{j} is as described for chi2eta1.

References

[1] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK: Cambridge University Press, 2000.
[2] Percival, D. B., D. Mondal, "A Wavelet Variance Primer." Handbook of Statistics, Volume. 300, Time Series Analysis: Methods and Applications, (T. S. Rao, S. S. Rao, and C. R. Rao, eds.). Oxford, UK: Elsevier, 2012, pp. 623-658.
[3] Cornish, C. R., C. S. Bretherton, and D. B. Percival. "Maximal Overlap Wavelet Statistical Analysis with Application to Atmospheric Turbulence." BoundaryLayer Meteorology. Vol. 119, Number 2, 2005, pp. 339-374.

See Also

imodwt | modwt | modwtcorr | modwtmra | modwtxcorr

Introduced in R2015b

modwtxcorr

Wavelet cross-correlation sequence estimates using the maximal overlap discrete wavelet transform (MODWT)

Syntax

```
xcseq = modwtxcorr(w1,w2)
xcseq = modwtxcorr(w1,w2,wav)
[xcseq,xcseqci] = modwtxcorr(___)
[xcseq,xcseqci] = modwtxcorr(w1,w2,wav,conflevel)
[xcseq,xcseqci,lags] = modwtxcorr(
```

\qquad

``` )
```

\qquad

``` ] = modwtxcorr (
``` \(\qquad\)
``` ,'reflection')
```


Description

xcseq = modwtxcorr(w1,w2) returns the wavelet cross-correlation sequence estimates for the maximal overlap discrete wavelet transform (MODWT) transforms specified in w1 and w2. xcseq is a cell array of vectors where the elements in each cell correspond to cross-correlation sequence estimates. If there are enough nonboundary coefficients at the final level, modwtxcorr returns the scaling cross-correlation sequence estimate in the final cell of xcseq.
xcseq $=$ modwtxcorr(w1,w2, wav) uses the wavelet wav to determine the number of boundary coefficients by level.
[xcseq, xcseqci] = modwtxcorr(___) returns in xcseqci the 95% confidence intervals for the cross-correlation sequence estimates in xcseq, using any arguments from the previous syntaxes.
[xcseq,xcseqci] = modwtxcorr(w1,w2,wav,conflevel) uses conflevel for the coverage probability of the confidence interval. conflevel is a real scalar strictly greater than 0 and less than 1 . If conflevel is unspecified or specified as empty, the coverage probability defaults to 0.95 .
[xcseq, xcseqci, lags] = modwtxcorr (__) returns the lags for the wavelet crosscorrelation sequence estimates in a cell array of column vectors.

[] = modwtxcorr(\qquad , 'reflection') reduces the number of wavelet and scaling coefficients at each scale by half before computing the cross-correlation sequences. Specifying the 'reflection' option in modwtxcorr is equivalent to first obtaining the MODWT of w1 w2 with 'periodic' boundary handling and then computing the wavelet cross-correlation sequence estimates. Use this option only when you obtain the MODWT of $w 1$ and w2 using the 'reflection' boundary condition. You must enter the entire character vector 'reflection'. If you added a wavelet named 'reflection' using the wavelet manager, you must rename that wavelet prior to using this option. 'reflection' may be placed in any position in the input argument list after the input transforms w1 w2.

Examples

Cross-Correlation Sequence

Obtain the MODWT of the Southern Oscillation Index and Truk Islands pressure data. The sampling period is one day.

```
load soi
load truk
wsoi = modwt(soi);
wtruk = modwt(truk);
```

Compute the wavelet cross-correlation sequences. Examine the level-five crosscorrelation sequence corresponding to a scale of 32-64 days. Determine the index corresponding to a lag of zero and plot out to 240 lags.

```
xcseq = modwtxcorr(wsoi,wtruk);
zerolag = floor(numel(xcseq{5})/2)+1;
plot(xcseq{5}(zerolag:zerolag+240),'linewidth',2)
set(gca,'xlim',[1 240]);
title({'Cross-Correlation Sequence Level 5'; 'Scale: 32-64 Days'});
hold off
```


Cross-Correlation Sequence Level 5
 Scale: 32-64 Days

Cross-Correlation Sequence with Fejer-Korovkin Wavelet

Obtain the MODWT of the Southern Oscillation Index and Truk Islands pressure data using the Fejer-Korovkin wavelet filter with 8 coefficients. The sampling period of the data is one day.

```
load soi
load truk
wsoi = modwt(soi,'fk8');
wtruk = modwt(truk,'fk8');
```

Compute the wavelet cross-correlation sequences. Examine the level-five crosscorrelation sequence corresponding to a scale of 32-64 days. Determine the index corresponding to a lag of zero and plot out to 240 lags.

```
xcseq = modwtxcorr(wsoi,wtruk,'fk8');
zerolag = floor(numel(xcseq{5})/2)+1;
plot(xcseq{5}(zerolag:zerolag+240),'linewidth', 2)
set(gca,'xlim',[1 240]);
title({'Cross-Correlation Sequence Level 5'; 'Scale: 32-64 Days'});
hold off
```


Cross-Correlation Sequence Level 5 Scale: 32-64 Days

Cross-Correlation Confidence Intervals by Scale

Plot the wavelet cross-correlation with 95% confidence intervals at scale 4 for two $5-\mathrm{Hz}$ sine wave signals with additive noise.

```
dt = 0.01;
t = 0:dt:6;
x = cos(2*pi*5*t)+1.5*randn(size(t));
```

```
y = cos(2*pi*5*t-pi)+2*randn(size(t));
wx = modwt(x,'fk14',5);
wy = modwt (y,'fk14',5);
modwtcorr(wx,wy,'fk14')
j = 4;
[xcseq,xcseqci] = modwtxcorr(wx,wy,'fk14');
zerolag = floor(numel(xcseq{j})/2)+1;
lagidx = zerolag-30:zerolag+30;
plot(xcseq{j}(lagidx));
hold on;
grid
plot(xcseqci{j}(lagidx,:),'r--');
xlabel('Samples');
title('Scale: 0.32-0.16 Seconds');
```


Cross-Correlation . 90 and . 95 Confidence Intervals Comparison

Compare the .90 and .95 (default) confidence intervals for the wavelet cross-correlation at level four.

Obtain the MODWT for two noisy sine waves using the Fejer-Korovkin with 14 coefficients, and specify the level to use.

```
dt = 0.01;
t = 0:dt:6;
x = cos(2*pi*5*t)+1.5*randn(size(t));
y = cos(2*pi*5*t-pi)+2*randn(size(t));
wx = modwt(x,'fk14',4);
wy = modwt(y,'fk14',4);
```

```
lev = 4;
[xcseq,xcseqci] = modwtxcorr(wx,wy,'fk14');
[xcseq90,xcseqci90] = modwtxcorr(wx,wy,'fk14',0.90);
zerolag = floor(numel(xcseq{lev})/2)+1;
zerolag90 = floor(numel(xcseq90{lev})/2)+1;
lagidx = zerolag-30:zerolag+30;
lagidx90 = zerolag90-30:zerolag90+30;
plot(xcseqci{lev}(lagidx,:), '--r');
hold on
plot(xcseqci90{lev}(lagidx90,:), '--b');
plot(xcseq{lev}(lagidx),'-k','LineWidth',1);
grid
title('.90 and .95 Confidence Levels')
```

. 90 and .95 Confidence Levels

Notice that the .95 confidence interval width (in red) is larger than the .90 confidence interval width (in blue).

Plot Cross-Correlation Sequences by Lag

Plot the cross-correlation sequence estimate for the Southern Oscillation Index and Truk Island pressure data. Estimate 95% confidence intervals for scale of 2^{5} days.

```
load soi
load truk
wsoi = modwt(soi);
wtruk = modwt(truk);
[xcseq,xcseqci,lags] = modwtxcorr(wsoi,wtruk);
plot(lags{5},xcseq{5},'linewidth',2)
```

```
hold on
plot(lags{5},xcseqci{5},'r--')
set(gca,'xlim',[-120 120]);
xlabel('Lag (Days)');
grid
title({'Cross-Correlation Sequence Level 5'; 'Scale: 32-64 Days'});
hold off
```

Cross-Correlation Sequence Level 5
Scale: 32-64 Days

Cross-Correlation with Reflection Boundary

Obtain the MODWT of 36 years of Southern Oscillation Index and Truk Islands pressure data with both periodic and reflection boundary conditions. The modwt with the 'reflection' option extends the input signal symmetrically at the right boundary. The input signal is then twice its original length. MODWTXCORR with the reflection
boundary handling reduces the number of wavelet and scaling coefficients at each half before computing the cross-correlation sequences. The size of the cross-correlation sequences is the same as acquiring the MODWT with the default periodic boundary condition.

```
load soi
load truk
```

Obtain the MODWT with the default periodic boundary condition.

```
wsoi_default = modwt(soi);
wtruk_default = modwt(truk);
```

Obtain the MODWT with the reflection boundary condition.

```
wsoi_reflect = modwt(soi,'reflection');
wtruk_reflect = modwt(truk,'reflection');
```

Obtain the cross correlation sequences.

```
xcseq_default = modwtxcorr(wsoi_default,wtruk_default);
xcseq_reflect = modwtxcorr(wsoi_reflect,wtruk_reflect,'reflection');
```

Compare the number of elements in the cell array output for both boundary conditions.

```
cellfun(@numel,xcseq_reflect)
cellfun(@numel,xcseq_default)
```

ans =
25981
25953
25897
25785
25561
25113
24217
22425
18841
11673
ans =

- "Wavelet Analysis of Financial Data"

Input Arguments

w1 - MODWT transform of signal 1

matrix

MODWT transform of signal 1, specified as a matrix of doubles. The input w1 must be the same size as w2 and must have been obtained with the same wavelet. By default, modwt xcorr assumes that you obtained the MODWT using the symlet wavelet with four vanishing moments, 'sym4').

w2 - MODWT transform of signal 2

matrix

MODWT transform of signal 2, specified as a matrix of doubles. The input w2 must be the same size as w 1 and must have been obtained with the same wavelet. By default, modwtxcorr assumes that you obtained the MODWT using the symlet wavelet with four vanishing moments ('sym4').

wav - Wavelet

'sym4' (default) | character vector | positive even integer
Wavelet, specified as a character vector, indicating a valid wavelet, or as a positive even integer indicating the length of the wavelet and scaling filters. If wav is unspecified or specified as an empty, [], wav defaults to 'sym4'.

conflevel - Confidence level

0.95 (default) | positive scalar less than 1

Confidence level, specified as a positive scalar less than 1 . conflevel determines the coverage probability of the confidence intervals in xcseqci. If unspecified, or specified as empty, [], conflevel defaults to 0.95 .

Output Arguments

xcseq - Cross-correlation sequences by scale

cell array of vectors
Cross-correlation sequences by scale, returned as a cell array of vectors. The vectors are of size $2 N J$-by-1, where $N J$ is the number of nonboundary coefficients by level (scale). This level is the minimum of size (w1, 1) and floor (log2 (N/(L-1)+1)) where N is the length of the data and L is the filter length. If there are enough nonboundary coefficients at the final level, modwtxcorr returns the scaling cross-correlation sequence estimate in the final cell of xcseq.

xcseqci - Confidence intervals by scale

cell array of matrices

Confidence intervals by scale, returned as a cell array of matrices. The size of each matrix is ($2 N J-1$)-by-2, where $N J$ is the number of nonboundary coefficients by level (scale).

- For the .95 default value, the first column of the $i^{\text {th }}$ element of xcseqci contains the lower 95% confidence bound for the cross-correlation coefficient at each lag.
- For the .95 default value, the second column contains the upper 95% confidence bound.

Confidence bounds are computed using Fisher's Z-transformation. The standard error of Fisher's Z statistic is the square root of $N-3$. In this case, N is the equivalent number of coefficients in the critically sampled discrete wavelet transform (DWT), floor (size (w1, 2) / 2^{\wedge} LEV), where LEV is the level of the wavelet transform. modwtcorr returns NaNs for the confidence bounds when N^{3} is less than or equal to zero.

lags - Lags for the cross-correlation sequences
 cell array of vectors

Lags for the cross-correlation sequences, returned as a cell array of vectors. lags is a cell array of column vectors the same length as xcseq. The elements in each cell of xcseq
correspond to the cross-correlation sequence estimates at lags from -($N J-1$) to ($N J-1$), where $N J$ is the number of nonboundary coefficients at level J. The $0^{\text {th }}$ lag element is located at the index floor $((2 * \mathrm{NJ}-1) / 2)+1$.

References

[1] >Percival, D. B., and Walden, A. T. Wavelet Methods for Time Series Analysis. Cambridge, U.K: Cambridge University Press, 2000.
[2] Whitcher, B., P. Guttorp, and D. B. Percival. "Wavelet analysis of covariance with application to atmospheric time series." Journal of Geophysical Research, Vol. 105,2000 , pp. 14941-14962.

See Also
imodwt | modwt | modwtcorr | modwtmra | modwtvar
Introduced in R2015b

morlet

Morlet wavelet

Syntax

$$
[P S I, X]=\operatorname{morlet}(\mathrm{LB}, \mathrm{UB}, \mathrm{~N})
$$

Description

[PSI, X] = morlet (LB, UB, N) returns values of the Morlet wavelet on an N point regular grid in the interval [LB, UB].

Output arguments are the wavelet function PSI computed on the grid X, and the grid X.
This wavelet has [-4 4] as effective support. Although [-4 4] is the correct theoretical effective support, a wider effective support, [-8 8], is used in the computation to provide more accurate results.

$$
\psi(x)=e^{-x^{2} / 2} \cos (5 x)
$$

Examples

Morlet Wavelet

This example shows how to create a Morlet wavelet. The wavelet has an effective support of $[-4,4]$. Use 1,000 sample points.

```
lb = -4;
ub = 4;
n = 1000;
[psi,xval] = morlet(lb,ub,n);
plot(xval,psi)
title('Morlet Wavelet');
```


Morlet Wavelet

See Also

waveinfo

Introduced before R2006a

mswcmp

Multisignal 1-D compression using wavelets

Syntax

```
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH)
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH,PARAM)
[XC,THRESH] = mswcmp('cmpsig',...)
[DECCMP,THRESH] = mswcmp('cmpdec',...)
THRESH = mswcmp('thr',...)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)
[...] = mswcmp(...,S_OR_H)
[...] = mswcmp(...,S_OR_H,KEEPAPP)
[...] = mswcmp(...,S_OR_H,KEEPAPP,IDXSIG)
```


Description

mswcmp computes thresholds and, depending on the selected option, performs compression of 1-D signals using wavelets.
[XC, DECCMP, THRESH] = mswcmp('cmp', DEC, METH) or [XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH, PARAM) returns a compressed (indicated by 'cmp ' input) version XC of the original multisignal matrix X, whose wavelet decomposition structure is DEC. The output XC is obtained by thresholding the wavelet coefficients: DECCMP, which is the wavelet decomposition associated with XC (see mdwtdec), and THRESH is the matrix of threshold values. The input METH is the name of the compression method and PARAM is the associated parameter, if required.

Valid compression methods METH are shown in the following tables. For methods that use an associated parameter, the range of allowable PARAM values is also shown.

'rem_n0'	Remove near 0
'bal_sn'	Balance sparsity-norm

'sqrtbal_sn'	Balance sparsity-norm (sqrt)
'scarce'	Scarce, PARAM (any number)
'scarcehi'	Scarce high, $2.5 \leq$ PARAM ≤ 10
'scarceme'	Scarce medium, $1.5 \leq$ PARAM ≤ 2.5
'scarcelo'	Scarce low, $1 \leq$ PARAM ≤ 2

PARAM is a sparsity parameter, and it should be such that: $1 \leq$ PARAM ≤ 10. For scarce method no control is done.

'L2_perf'	Energy ratio
'N0_perf'	Zero coefficients ratio

PARAM is a real number which represents the required performance:
$0 \leq$ PARAM ≤ 100.

'glb_thr'	Global threshold

PARAM is a real positive number.

'man_thr'	Manual method

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such that:

- - PARAM (i, j) is the threshold for the detail coefficients of level j for the ith signal (1 $\leq \mathrm{j} \leq$ NbLEV) .
- - PARAM ($\mathbf{i}, \operatorname{NbLEV}+1$) is the threshold for the approximation coefficients for the ith signal (if KEEPAPP is 0).

Where NbSIG is the number of signals and NbLEV the number of levels of decomposition.
[XC,THRESH] = mswcmp('cmpsig',...) or [DECCMP,THRESH] = mswcmp('cmpdec',...) or
THRESH = mswcmp('thr',...) Instead of the 'cmp' input OPTION, you can use 'cmpsig', 'cmpdec' or 'thr' to select other output arguments. 'thr' returns the computed thresholds, but compression is not performed.
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH, PARAM) The decomposition structure input argument DEC can be replaced by four arguments: DIRDEC, X, WNAME, and LEV. Before performing a compression or computing thresholds, the multisignal matrix X is decomposed at level LEV using the wavelet WNAME, in the direction DIRDEC.
[...] = mswcmp(..., S_OR_H)
[...] $=\operatorname{mswcmp}\left(\ldots\right.$, S_OR_H, KEEPAPP $^{\text {(. }}$
[...] = mswcmp(...,S_OR_H,KEEPAPP,IDXSIG) Three more optional inputs may be used:

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details). Default is ' h '.
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false). Default is false.
- IDXSIG is a vector which contains the indices of the initial signals, or the character vector 'all'. Default is 'all'.

Examples

\% Load original 1D-multisignal.
load thinker

```
% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
% Compress the signals to obtain a percentage of zeros
% near 95% for the wavelet coefficients.
[XC,decCMP,THRESH] = mswcmp('cmp',dec,'NO_perf',95);
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);
% Plot the original signals 1 and 31, and
% the corresponding compressed signals.
figure;
plot(X([1 31],:)','r--','linewidth',2); hold on
plot(XC([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XC solid line')
```


References

Birgé L.; P. Massart (1997), "From Model Selection to Adaptive Estimation," in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55-88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image Compression Through Wavelet Transform Coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in Wavelet Analysis and WVD: a Ten Minute Tour," in Progress in Wavelet Analysis and Applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone(1994), "Ideal Spatial Adaptation by Wavelet Shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet Shrinkage: Asymptopia," Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301-369.

Donoho, D.L.; I.M. Johnstone, "Ideal De-noising in an Orthonormal Basis Chosen from a Library of Bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.

Donoho, D.L. (1995), "De-noising by Soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

See Also

mdwtdec | mdwtrec | mswthresh | wthresh

Introduced in R2007a

mswcmpscr

Multisignal 1-D wavelet compression scores

Syntax

[THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC)

Description

[THR,L2SCR,NOSCR, IDXSORT] = mswcmpscr(DEC) computes four matrices: thresholds THR, compression scores L2SCR and NOSCR, and indices IDXSORT. The decomposition DEC corresponds to a matrix of wavelet coefficients CFS obtained by concatenation of detail and (optionally) approximation coefficients, where

```
CFS = [cd{DEC.level}, ... , cd{1}] or CFS = [ca, cd{DEC.level}, ... ,
cd{1}]
```

The concatenation is made rowwise if DEC. dirDec is equal to ' r ' or columnwise if DEC. dirDec is equal to ' c ' .

If NbSIG is the number of original signals and NbCFS the number of coefficients for each signal (all or only the detail coefficients), then CFS is an NbSIG-by-NbCFS matrix. Therefore,

- THR, L2SCR, NOSCR are NbSIG-by-(NbCFS+1) matrices
- IDXSORT is an NbSIG-by-NbCFS matrix
- THR (: , 2:end) is equal to CFS sorted by row in ascending order with respect to the absolute value.
- For each row, IDXSORT contains the order of coefficients and $\operatorname{THR}(:, 1)=0$.

For the ith signal:

- $\operatorname{L2SCR}(\mathrm{i}, \mathrm{j})$ is the percentage of preserved energy (L2-norm), corresponding to a threshold equal to $\operatorname{CFS}(\mathrm{i}, \mathrm{j}-1)(2 \leq \mathrm{j} \leq \operatorname{NbCFS})$, and $\operatorname{L2SCR}(:, 1)=100$.
- $\operatorname{NOSCR}(i, j)$ is the percentage of zeros corresponding to a threshold equal to $\operatorname{CFS}(\mathrm{i}, \mathrm{j}-1)(2 \leq \mathrm{j} \leq \operatorname{NbCFS})$, and $\operatorname{NOSCR}(:, 1)=0$.

Three more optional inputs may be used:
[...] = mswcmpscr(...,S_OR_H,KEEPAPP,IDXSIG)

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false).
- IDXSIG is a vector that contains the indices of the initial signals, or the character vector 'all'.

The defaults are, respectively, ' h ', false and 'all'.

Examples

```
% Load original 1D-multisignal.
load thinker
% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
% Compute compression performances for soft an hard thresholding.
[THR_S,L2SCR_S,NOSCR_S] = mswcmpscr(dec,'s');
[THR_H,L2SCR_H,NOSCR_H] = mswcmpscr(dec,'h');
```


References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also

mdwtdec | mdwtrec | ddencmp | wdencmp

Introduced in R2007a

mswcmptp

Multisignal 1-D compression thresholds and performances

Syntax

[THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH) [THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH,PARAM)

Description

[THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH) or [THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH, PARAM) computes the vectors THR_V̄AL, L2_Perf and NO_Perf obtained after a compression using the METH method and, if required, the PARAM parameter (see mswcmp for more information on METH and PARAM).

For the ith signal:

- THR_VAL(i) is the threshold applied to the wavelet coefficients. For a level dependent method, THR_VAL (i, j) is the threshold applied to the detail coefficients at level j
- L2_Perf(i) is the percentage of energy (L2_norm) preserved after compression.
- NO_Perf(i) is the percentage of zeros obtained after compression.

You can use three more optional inputs:
[...] = mswcmptp(..., S_OR_H,KEEPAPP,IDXSIG)

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false)
- IDXSIG is a vector which contains the indices of the initial signals, or the character vector 'all'.

The defaults are, respectively, ' h ', false and 'all'.

Examples

```
% Load original 1D-multisignal.
load thinker
% Perform a decomposition at level }2\mathrm{ using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
% Compute compression thresholds and exact performances
% obtained after a compression using the method 'NO_perf' and
% requiring a percentage of zeros near 95% for the wavelet
% coefficients.
[THR_VAL,L2_Perf,NO_Perf] = mswcmptp(dec,'NO_perf',95);
```


References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also
mdwtdec | mdwtrec | ddencmp | wdencmp
Introduced in R2007a

mswden

Multisignal 1-D denoising using wavelets

Syntax

```
[XD,DECDEN,THRESH] = mswden('den',...)
[XD,THRESH] = mswden('densig',...)
[DECDEN,THRESH] = mswden('dendec',...)
THRESH = mswden('thr',...)
[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH, PARAM)
[...] = mswden(...,S_OR_H)
[...] = mswden(...,S_OR_H,KEEPAPP)
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)
```


Description

mswden computes thresholds and, depending on the selected option, performs denoising of 1-D signals using wavelets.
[XD, DECDEN, THRESH] = mswden('den',...) returns a denoised version XD of the original multisignal matrix X, whose wavelet decomposition structure is DEC. The output XD is obtained by thresholding the wavelet coefficients, DECDEN is the wavelet decomposition associated to XD (see mdwtdec), and THRESH is the matrix of threshold values. The input METH is the name of the denoising method and PARAM is the associated parameter, if required.

Valid denoising methods METH and associated parameters PARAM are:

'rigrsure'	Principle of Stein's Unbiased Risk
'heursure'	Heuristic variant of the first option
'sqtwolog'	Universal threshold sqrt (2*log(.))
'minimaxi'	Minimax thresholding (see thselect)

For these methods PARAM defines the multiplicative threshold rescaling:

'one '	No rescaling
'sln'	Rescaling using a single estimation of level noise based on first level coefficients
'mln'	Rescaling using a level dependent estimation of level noise

Penalization methods

'penal'	Penal
'penalhi'	Penal high, $2.5 \mathfrak{R} \leq$ PARAM $\mathfrak{R \leq 1 0}$
'penalme'	Penal medium, $1.5 \mathfrak{R} \leq$ PARAM $\mathfrak{R \leq 2 . 5}$
'penallo '	Penal low, $1 \mathfrak{R} \leq$ PARAM $\mathfrak{R} \leq 2$

PARAM is a sparsity parameter, and it should be such that: $1 \leq$ PARAM ≤ 10. For penal method, no control is done.

Manual method

'man_thr'	Manual method

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such that:

- $\operatorname{PARAM}(i, j)$ is the threshold for the detail coefficients of level j for the ith signal ($1 \leq$ $\mathrm{j} \leq \mathrm{NbLEV}$).
- PARAM ($\mathrm{i}, \mathrm{NbLEV}+1$) is the threshold for the approximation coefficients for the ith signal (if KEEPAPP is 0).
where NbSIG is the number of signals and NbLEV the number of levels of decomposition.
Instead of the 'den' input OPTION, you can use 'densig', 'dendec' or 'thr' OPTION to select output arguments:
[XD,THRESH] = mswden('densig',...) or [DECDEN,THRESH] = mswden('dendec',...)

THRESH = mswden('thr',...) returns the computed thresholds, but denoising is not performed.

The decomposition structure input argument DEC can be replaced by four arguments: DIRDEC, X, WNAME and LEV.
[...] = mswden(OPTION, DIRDEC, X, WNAME , LEV, METH, PARAM) before performing a denoising or computing thresholds, the multisignal matrix X is decomposed at level LEV using the wavelet WNAME, in the direction DIRDEC.

You can use three more optional inputs:
[...] = mswden(..., S_OR_H) or
[...] $=$ mswden(..., S_OR_H,KEEPAPP) or
$[\ldots]=\operatorname{mswden}\left(\ldots\right.$, S_OR_H, $_{-}^{-}$KEEPAPP, IDXSIG)

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false).
- IDXSIG is a vector that contains the indices of the initial signals, or the character vector 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples

\% Load original 1D-multisignal.
load thinker
\% Perform a decomposition at level 2 using the wavelet db2.
dec = mdwtdec('r', X,2,'db2');
\% Denoise signals using the universal method
\% of thresholding (sqtwolog) and the 'sln'
\% threshold rescaling (with a single estimation
\% of level noise, based on first level coefficients).
[XD, decDEN, THRESH] = mswden('den',dec,'sqtwolog','sln');
\% Plot the original signals 1 and 31, and the
\% corresponding denoised signals.
figure;
plot(X([1 31],:)','r--','linewidth',2); hold on
plot(XD([1 31],:)','b','linewidth',2);

```
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XD solid line')
```


References

Birgé, L.; P. Massart (1997), "From model selection to adaptive estimation," in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55-88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image compression through wavelet transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone(1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia," Jour. Roy. Stat. Soc.,series B, vol. 57 no. 2, pp. 301-369.

Donoho, D.L.; I.M. Johnstone, "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

See Also
mdwtdec | mdwtrec | mswthresh | wthresh
Introduced in R2007a

mswthresh

Perform multisignal 1-D thresholding

Syntax

```
Y = mswthresh(X,SORH,T)
Y = mswthresh(X,SORH,T,'c')
Y = mswthresh(X,'s',T)
Y = mswthresh(X,'h',T)
```


Description

Y = mswthresh (X, SORH, T) returns soft (if SORH='s') or hard (if SORH='h') Tthresholding of the input matrix X. T can be a single value, a matrix of the same size as X or a vector. In this last case, thresholding is performed rowwise and LT $=$ length (T) must be such that size $(X, 1) \leq L T$.

Y = mswthresh(X,SORH,T, 'c') performs a columnwise thresholding and size(X,2) $\leq \mathrm{LT}$.
$\mathrm{Y}=$ mswthresh(X, 's', T) returns $\mathrm{Y}=\operatorname{SIGN}(\mathrm{X}) \cdot(|\mathrm{X}|-\mathrm{T})+$, soft thresholding is shrinkage.
$Y=$ mswthresh $(X, ' h ', T)$ returns $Y=X .1_{-}(|X|>T)$, hard thresholding is cruder.

See Also

mswden | mswcmp | wthresh \| wden \| wdencmp | wpdencmp

Introduced in R2007a

nodeasc

Node ascendants

Syntax

$\mathrm{A}=\operatorname{nodeasc}(T, N)$

Description

nodeasc is a tree-management utility.
A $=$ nodeasc (T, N) returns the indices of all the ascendants of the node N in the tree T where N can be the index node or the depth and position of the node. A is a column vector with $\mathrm{A}(1)=$ index of node N.

A $=$ nodeasc (T, N, 'deppos $\left.^{\prime}\right)$ is a matrix, which contains the depths and positions of all ascendants. $A(i, 1)$ is the depth of the i-th ascendant and $A(i, 2)$ is the position of the i-th ascendant.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples

```
% Create binary tree of depth 3.
t = ntree(2,3);
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```


\% Change Node Label from Depth_Position to Index
\% (see the plot function).


```
nodeasc(t,[2 2])
ans =
    5
    2
    0
nodeasc(t,[2 2],'deppos')
ans =
    2
    1 1 1
```

See Also
nodedesc | nodepar | wtreemgr
Introduced before R2006a

nodedesc

Node descendants

Syntax

$\mathrm{D}=$ nodedesc (T, N)
D $=$ nodedesc ($T, N,{ }^{\prime}$ deppos')

Description

nodedesc is a tree-management utility.
$\mathrm{D}=$ nodedesc (T, N) returns the indices of all the descendants of the node N in the tree T where N can be the index node or the depth and position of node. D is a column vector with $D(1)=$ index of node N.
$\mathrm{D}=$ nodedesc $\left(T, N\right.$, 'deppos $\left.^{\prime}\right)$ is a matrix that contains the depths and positions of all descendants. $D(i, 1)$ is the depth of the i-th descendant and $D(i, 2)$ is the position of the i-th descendant.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples

```
% Create binary tree of depth 3.
t = ntree(2,3);
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```


\% Change Node Label from Depth_Position to Index \% (see the plot function).

\% Node descendants. nodedesc (t,2)
ans =
2
5
6
13
14
nodedesc(t, 2, 'deppos')
ans =
$1 \quad 1$
22

```
    2 3
    3 6
    3 7
nodedesc(t,[1 1],'deppos')
ans =
    1
    2 2
    2 3
    3 6
    3 7
nodedesc(t,[1 1])
ans =
    2
    5
    6
    13
    14
```


See Also

```
nodeasc | nodepar | wtreemgr
Introduced before R2006a
```


nodejoin

Recompose node

Syntax

$\mathrm{T}=\operatorname{nodejoin}(T, N)$
$\mathrm{T}=\operatorname{nodejoin}(T)$
T = nodejoin(T,0)

Description

nodejoin is a tree-management utility.
$\mathrm{T}=$ nodejoin (T, N) returns the modified tree T corresponding to a recomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$\mathrm{T}=\operatorname{nodejoin}(T)$ is equivalent to $\mathrm{T}=\operatorname{nodejoin}(\mathrm{T}, 0)$.

Examples

```
% Create binary tree of depth 3.
t = ntree(2,3);
% Plot tree t.
plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).
```


\% Merge nodes of indices 4 and 5.
$\mathrm{t}=$ nodejoin($\mathrm{t}, 5)$;
t = nodejoin(t,4);
\% Plot new tree t.
plot(t)
\% Change Node Label from Depth_Position to Index
\% (see the plot function).

See Also

nodesplt

Introduced before R2006a

nodepar

Node parent

Syntax

F = nodepar (T,N)
F = nodepar(T,N,'deppos')

Description

nodepar is a tree-management utility.
$F=$ nodepar (T, N) returns the indices of the Äúparent(s)Ä̀̀ of the nodes N in the tree T where N can be a column vector containing the indices of nodes or a matrix that contains the depths and positions of nodes. In the last case, $N(i, 1)$ is the depth of the i-th node and $N(i, 2)$ is the position of the i-th node.
$\mathrm{F}=$ nodepar(T, N, 'deppos') is a matrix that contains the depths and positions of returned nodes. $F(i, 1)$ is the depth of the i-th node and $F(i, 2)$ is the position of the i th node.
nodepar ($\mathrm{T}, 0$) or nodepar $(\mathrm{T},[0,0])$ returns -1 .
nodepar(T,0,'deppos') or nodepar(T,[0,0],'deppos') returns [-1,0].
The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples

```
% Create binary tree of depth 3.
t = ntree(2,3);
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```


\% Change Node Label from Depth_Position to Index \% (see the plot function).


```
% Nodes parent.
nodepar(t,[2 2],'deppos')
ans =
    1 1
nodepar(t,[1;7;14])
ans =
    0
    3
    6
```


See Also

nodeasc | nodedesc | wtreemgr

Introduced before R2006a

nodesplt

Split (decompose) node

Syntax

$\mathrm{T}=\operatorname{nodesplt}(T, N)$

Description

nodesplt is a tree-management utility.
$\mathrm{T}=$ nodesplt (T, N) returns the modified tree T corresponding to the decomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples

```
% Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);
% Plot tree t.
plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).
```


\% Split node of index
10.
t = nodesplt(t,10);
\% Plot new tree t.
plot(t)
\% Change Node Label from Depth_Position to Index
\% (see the plot function).

See Also

nodejoin

Introduced before R2006a

noleaves

Determine nonterminal nodes

Syntax

```
N = noleaves(T)
N = noleaves(T,'dp')
```


Description

$\mathrm{N}=$ noleaves (T) returns the indices of nonterminal nodes of the tree T (i.e., nodes that are not leaves). N is a column vector.

The nodes are ordered from left to right as in tree T.
$N=$ noleaves($T, \mathrm{I}^{\prime} \mathrm{dp}$) returns a matrix N , which contains the depths and positions of nonterminal nodes.
$N(i, 1)$ is the depth of the i-th nonterminal node and $N(i, 2)$ is the position of the i-th nonterminal node.

Examples

```
% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).
```


\% List nonterminal nodes (index). ntnodes_ind $=$ noleaves(t)
ntnodes_ind =
0
1
2
3
6
% List nonterminal nodes (Depth Position).
% List nonterminal nodes (Depth Position).
ntnodes_depo = noleaves(t,'dp')
ntnodes_depo = noleaves(t,'dp')
ntnodes_depo =
ntnodes_depo =
0
0
1 0
1 0
1 1
1 1
2 0
2 0
2 3
2 3

See Also

leaves

Introduced before R2006a

ntnode

Number of terminal nodes

Syntax

```
NB = ntnode(T)
```


Description

ntnode is a tree-management utility.
NB $=$ ntnode (T) returns the number of terminal nodes in the tree T.
The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples

\% Create binary tree (tree of order 2) of depth 3.
t = ntree (2,3);
\% Plot tree t. plot(t)


```
% Number of terminal nodes.
ntnode(t)
ans =
8
```


See Also

wtreemgr

Introduced before R2006a

ntree

NTREE constructor

Syntax

```
T = ntree(ORD,D)
T = ntree
T = ntree(2,0)
T = ntree(ORD)
T = ntree(ORD,O)
T = ntree(ORD,D,S)
T = ntree(ORD,D,S,U)
```


Description

T = ntree (ORD, D) returns an NTREE object, which is a complete tree of order ORD and depth D.
$\mathrm{T}=\mathrm{ntree}$ is equivalent to $\mathrm{T}=\mathrm{ntree}(2,0)$.
$T=n t r e e(O R D)$ is equivalent to $T=n t r e e(O R D, 0)$.
With T = ntree(ORD, D, S) you can set a "split scheme" for nodes. The split scheme field S is a logical array of size ORD by 1.

The root of the tree can be split and it has ORD children. You can split the j-th child if $S(j)=1$.

Each node that you can split has the same property as the root node.
With T = ntree(ORD, D, S, U) you can, in addition, set a userdata field.
Inputs can be given in another way:
T = ntree('order',ORD,'depth', D,'spsch', S,'ud',U). For "missing" inputs the defaults are ORD = 2 and $D=0, S=o n e s([1: O R D]), U=\{ \}$.
$[T, N B]=$ ntree (...) returns also the number of terminal nodes (leaves) of T. For more information on object fields, type help ntree/get.

Class NTREE (Parent class: WTBO)

Fields

wtbo	Parent object
order	Tree order
depth	Tree depth
spsch	Split scheme for nodes
tn	Column vector with terminal node indices

Examples

\% Create binary tree (tree of order 2) of depth 3.
t2 = ntree $(2,3)$;
\% Plot tree t2.
plot(t2)

\% Create a quadtree (tree of order 4) of depth 2.

```
t4 = ntree(4,2,[[1 1 1 0 1]);
```

\% Plot tree t4.
plot(t4)

\% Split and merge some nodes using the gui
\% generated by plot (see the plot function).
\% The figure becomes:

See Also
wtbo
Introduced before R2006a

orthfilt

Orthogonal wavelet filter set

Syntax

[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W)

Description

[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W) computes the four filters associated with the scaling filter W corresponding to a wavelet:

Lo_D	Decomposition low-pass filter
Hi_D	Decomposition high-pass filter
Lo_R	Reconstruction low-pass filter
Hi_R	Reconstruction high-pass filter

For an orthogonal wavelet, in the multiresolution framework, we start with the scaling function ϕ and the wavelet function Ψ. One of the fundamental relations is the twin-scale relation:

$$
\frac{1}{2} \phi\left(\frac{x}{2}\right)=\sum_{n \in Z} w_{n} \phi(x-n)
$$

All the filters used in dwt and idwt are intimately related to the sequence $\left(w_{n}\right)_{n \in Z}$. Clearly if ϕ is compactly supported, the sequence $\left(w_{n}\right)$ is finite and can be viewed as a FIR filter. The scaling filter W is

- A low-pass FIR filter
- Of length $2 N$
- Of sum 1

Of norm $\frac{1}{\sqrt{2}}$
For example, for the db 3 scaling filter,
load db3
db3
db3 $=$
$0.23520 .57060 .3252-0.0955-0.06040 .0249$

```
sum(db3)
```

ans $=$
1.000
norm(db3)
ans $=$
0.7071

From filter W, we define four FIR filters, of length 2 N and norm 1, organized as follows:

Filters	Low-Pass	High-Pass
Decomposition	Lo_D	Hi_D
Reconstruction	Lo_R	Hi_R

The four filters are computed using the following scheme:

where qmf is such that Hi_R and Lo_R are quadrature mirror filters (i.e., Hi_R(k) = $(-1)^{k} L o _R(2 N+1-k)$, for $\left.k=1,2, A ̈, 2 N\right)$, and where wrev flips the filter coefficients. So Hi_D and Lo_D are also quadrature mirror filters. The computation of these filters is performed using orthfilt.

Examples

```
% Load scaling filter.
load db8; w = db8;
subplot(421); stem(w);
title('Original scaling filter');
% Compute the four filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w);
subplot(423); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(424); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(425); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(426); stem(Hi_R);
title('Reconstruction high-pass filter');
% Check for orthonormality.
df = [Lo_D;Hi_D];
rf = [Lo_R;Hi_R];
id = df*df
id =
    1.0000 0
            0 1.0000
id = rf*rf'
id =
    1.0000 0
            0 1.0000
% Check for orthogonality by dyadic translation, for example:
df = [Lo_D 0 0;Hi_D O O];
dft = [0 O Lo_D; 0 O Hi_D];
zer = df*dft'
zer =
    1.0e-12 *
    -0.1883 0.0000
    -0.0000-0.1883
```

```
% High- and low-frequency illustration.
fftld = fft(Lo_D); ffthd = fft(Hi_D);
freq = [1:length(Lo_D)]/length(Lo_D);
subplot(427); plot(freq,abs(fftld));
title('Transfer modulus: low-pass');
subplot(428); plot(freq,abs(ffthd));
title('Transfer modulus: high-pass')
% Editing some graphical properties,
% the following figure is generated.
```


References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed. pp. 117-119, 137, 152.

See Also
biorfilt | qmf | wfilters
Introduced before R2006a

otnodes

Order terminal nodes of binary wavelet packet tree

Syntax

```
[Tn_Pal,Tn_Seq] = otnodes(WPT)
[Tn_Pal,Tn_Seq,I,J] = otnodes(WPT)
[DP_Pal,DP_Seq] = otnodes(WPT,'dp')
```


Description

[Tn_Pal,Tn_Seq] = otnodes (WPT) returns the terminal nodes of the binary wavelet packet tree, WPT, in Paley (natural) ordering, Tn_Pal, and sequency (frequency) ordering, Tn_Seq. Tn_Pal and Tn_Seq are N-by-1 column vectors where N is the number of terminal nodes.
[Tn_Pal,Tn_Seq, I, J] = otnodes (WPT) returns the permutations of the terminal node indices such that Tn_Seq $=$ Tn_Pal(I) and Tn_Pal $=$ Tn_Seq(J).
[DP_Pal,DP_Seq] = otnodes (WPT, 'dp') returns the Paley and frequency-ordered terminal nodes in node depth-position format. DP_Pal and DP_Seq are N-by-2 matrices. The first column contains the depth index, and the second column contains the position index.

Input Arguments

WPT

Binary wavelet packet tree. You can use treeord to determine the order of your wavelet packet tree.

dp

Character vector indicating that the Paley-ordered or sequency-ordered nodes are returned in depth-position format.

Output Arguments

Tn_Pal

Terminal nodes in Paley (natural) ordering

Tn_Seq

Terminal nodes in sequency ordering

DP_Pal

Paley-ordered terminal nodes in depth-position format. This output argument only applies when you use the 'dp' input argument.

DP_Seq

Sequency-ordered terminal nodes in depth-position format. This output argument only applies when you use the 'dp' input argument.

Examples

Order terminal nodes with Paley and frequency ordering:

```
x = randn(8,1);
wpt = wpdec(x,2,'haar');
[Tn_Pal,Tn_Seq] = otnodes(wpt);
% Tn_Pal is [3 4 5 6]
% Tn_Seq is [l3 4 6 5]
```

Return permutations for Paley and frequency ordering:

```
load noisdopp;
wpt = wpdec(noisdopp,6,'sym4');
[Tn_Pal,Tn_Seq,I,J] = otnodes(wpt);
isequal(Tn_Seq(J),Tn_Pal)
isequal(Tn_Seq,Tn_Pal(I))
```

Order terminal nodes by depth and position:
$x=\operatorname{randn}(8,1)$;

```
wpt = wpdec(x,2,'haar');
[DP_Pal,DP_Seq] = otnodes(wpt,'dp');
```

Order terminal nodes from a modified wavelet packet tree:

```
t = wptree(2,2,rand(1,512),'haar');
t = wpsplt(t,4);
t = wpsplt(t,5);
t = wpsplt(t,10);
plot(t);
[tn_Pal,tn_Seq,I,J] = otnodes(t);
```


More About

Paley (Natural) and Sequency (Frequency) Ordering

The discrete wavelet packet transform iterates on both approximation and detail coefficients at each level. In this transform, A denotes the lowpass (approximation) filter followed by downsampling. D denotes the highpass (detail) filter followed by downsampling. The following figure represents a wavelet packet transform in Paley ordering acting on a time series of length 8 . The transform has a depth of two.

Because of aliasing introduced by downsampling, the frequency content extracted by the operator $A D$ is higher than the frequency content extracted by the $D D$ operator. Therefore, the terminal nodes in frequency (sequency) order are: $A A, D A, D D, A D$. The terminal nodes in Paley order have the following indices: 3,4,5,6. The frequency order has the indices: 3,4,6,5.

References

Wickerhauser, M.V. Lectures on Wavelet Packet Algorithms, Technical Report, Washington University, Department of Mathematics, 1992.

See Also

leaves | treeord

Introduced in R2010b

pat2cwav

Build wavelet from pattern

Syntax

[PSI,XVAL,NC] = pat2cwav(YPAT,METHOD,POLDEGREE,REGULARITY)

Description

[PSI, XVAL,NC] = pat2cwav(YPAT,METHOD,POLDEGREE,REGULARITY) computes an admissible wavelet for CWT (given by XVAL and PSI) adapted to the pattern defined by the vector YPAT, and of norm equal to 1 .

The underlying x -values pattern is set to
xpat = linspace(0,1, length (YPAT))
The constant NC is such that NC*PSI approximates YPAT on the interval [0,1] by least squares fitting using

- a polynomial of degree POLDEGREE when METHOD is equal to 'polynomial'
- a projection on the space of functions orthogonal to constants when METHOD is equal to 'orthconst'

The REGULARITY parameter defines the boundary constraints at the points 0 and 1 .
Allowable values are 'continuous', 'differentiable', and 'none'.
When METHOD is equal to 'polynomial'

- if REGULARITY is equal to 'continuous ', POLDEGREE must be greater than or equal to 3 .
- if REGULARITY is equal to 'differentiable', POLDEGREE must be greater than or equal to 5 .

Examples

The principle for designing a new wavelet for CWT is to approximate a given pattern using least squares optimization under constraints leading to an admissible wavelet well suited for the pattern detection using the continuous wavelet transform (see Misiti et al.).

```
load ptpssin1;
plot(X,Y), title('Original Pattern')
```



```
[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous') ;
plot(X,Y,'-',xval,nc*psi,'--'),
title('Original Pattern and Adapted Wavelet (dashed line)')
```


You can check that psi satisfies the definition of a wavelet by noting that it integrates to zero and that its L_{2} norm is equal to 1 .

```
dx = xval(2)-xval(1);
Mu = sum(psi*dx)
L2norm = sum(abs(psi).^2*dx)
```


References

Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), "Les ondelettes et leurs applications," Hermes.

Introduced before R2006a

plot

Plot tree GUI

Syntax

plot (T)
plot(T,FIG)

Description

plot is a graphical tree-management utility.
plot (T) plots the tree T.
The figure that contains the tree is a GUI tool. It lets you change the Node Label to Depth_Position or Index, and Node Action to Split-Merge or Visualize.

The default values are Depth_Position and Visualize.
You can click the nodes to execute the current Node Action.
plot (T, FIG) plots the tree T in the figure whose handle is FIG. This figure was already used to plot a tree, for example using the command

FIG $=\operatorname{plot}(T)$
After some split or merge actions, you can get the new tree using its parent figure handle. The following syntax lets you perform this functionality:

NEWT $=\operatorname{plot}(T, ' r e a d ', F I G)$
In fact, the first argument is dummy. The most general syntax is
NEWT = plot(DUMMY,'read',FIG)
where DUMMY is any object parented by an NTREE object. More generally, DUMMY can be any object constructor name returning an NTREE parented object. For example:

```
NEWT = plot(ntree,'read',FIG)
NEWT = plot(dtree,'read',FIG)
NEWT = plot(wptree,'read',FIG)
```


Examples

\% Create a wavelet packets tree (1-D)
load noisbloc
$\mathrm{x}=$ noisbloc;
$\mathrm{t}=\mathrm{wpdec}\left(\mathrm{x}, 2, \mathrm{~A}^{\prime} \mathrm{db} \mathrm{C}^{\prime}\right)$;
\% Plot tree t. plot(t)

Figure 1 \square

Tree Decomposition

data for node: 3 or $(2,0)$.

\% Change Node Label from Depth_Position to Index.
\% Click the node (3). You get the following figure.

Figure 1

Now set the Node Label back to Depth_Position. Change Node Action to SplitMerge. Click on the (1,1) node.

Figure 3

\square

Tree Decomposition

data for node: 0 or $(0,0)$.

The above figure now shows the discrete wavelet transform down to level 2.
\% Create a wavelet packets tree (2-D)
load woman2
t = wpdec2 (X, 1, 'sym4') ;
\% Plot tree t.
plot(t)
\% Change Node Label from Depth_Position to Index.
\% Click the node (1). You get the following figure.

Introduced before R2006a

plotdt

Plot dual-tree or double-density wavelet transform

Syntax

plotdt(wt)

Description

plotdt (wt) plots the coefficients of the 1-D or 2-D wavelet filter bank decomposition, wt.

Examples

Plot Complex Dual-Tree Wavelet Transform of 1-D Signal

Plot the complex dual-tree wavelet transform of the noisy Doppler signal.
Load the noisy Doppler signal. Obtain the complex dual-tree wavelet transform down to level 4.
load noisdopp;
wt = dddtree('cplxdt', noisdopp,4,'dtf1');
Plot the coefficients.
plotdt(wt)

Plot the complex oriented ducal-tree acavelet transform @f an image. 60
Level 4 -Lowpass-1 Level 4-Lowpass - 2

Load the xbox image. Obtain the complex oriented dual-tree wavelet transform down to level 3.
load xbox;
wt = dddtree2('cplxdt', xbox,3,'dtf1');
Plot the coefficients.
plotdt(wt)

Coefficients of level 3 - Lowpass

Level 3 - Lowpass

Select the desired level detail coefficients from the drop-down list.

- "Analytic Wavelets Using the Dual-Tree Wavelet Transform"

Input Arguments

wt - Wavelet transform

structure
Wavelet transform, returned as a structure from dddtree or dddtree2 with these fields:

```
type - Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'
```

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'realdt', 'cplxdt',,'realdddt', or 'cplxdddt'.'realdt' and 'realdddt' are only valid for the 2-D wavelet transform. The type, ' dwt ', is a critically sampled (nonredundant) discrete wavelet transform for 1-D data or 2-D images. The other decomposition types are oversampled wavelet transforms. For details about transform types see dddtree for 1-D wavelet transforms and dddtree2 for 2-D wavelet transforms.

level - Level of the wavelet decomposition

positive integer
Level of the wavelet decomposition, specified as a positive integer.

filters - Decomposition (analysis) and reconstruction (synthesis) filters

structure
Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these fields:

Fdf - First-stage analysis filters

matrix | cell array
First level decomposition filters specified as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the
wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

Df - Analysis filters for levels > 1

matrix | cell array
Analysis filters for levels >1, specified as an N-by- 2 or N-by- 3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N -by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.

Frf - First-level reconstruction filters

matrix | cell array
First-level reconstruction filters, specified as an N -by- 2 or N -by- 3 matrix for single-tree wavelet transforms, or a 1-by- 2 cell array of two N -by- 2 or N -by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf - Reconstruction filters for levels > $\mathbf{1}$
 matrix | cell array

Reconstruction filters for levels >1, specified as an N -by- 2 or N -by- 3 matrix for singletree wavelet transforms, or a 1-by-2 cell array of two N-by- 2 or N-by- 3 matrices for dual-tree wavelet transforms. The matrices are N-by- 3 for the double-density wavelet transforms. For an N-by- 2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by- 3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.
cfs - Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and structure of the matrix elements of the cell array depend on the type of wavelet transform and whether the decomposition is 1-D or 2-D. For a 1-D wavelet transform, the coefficients are organized by transform type as follows:

- 'dwt' - cfs\{j\}
- $\mathrm{j}=1,2, \ldots$ level is the level.
- cfs $\{$ level+1\} are the lowpass, or scaling, coefficients.
- 'ddt'-cfs\{j\}(:,:,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{k}=1,2$ is the wavelet filter.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdt'—cfs\{j\}(:,:,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'realdddt'—cfs\{j\}(:,:,d,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdddt'—cfs\{j\}(:,:,d,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- $\operatorname{cfs}\{l e v e l+1\}(:,:)$ are the lowpass, or scaling, coefficients.

For a 2-D wavelet transform, the coefficients are organized by transform type as follows:

- 'dwt'—cfs\{j\}(:,:, d)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- cfs $\{$ level 1 1\}(: ,:) are the lowpass, or scaling, coefficients.
- 'ddt'-cfs\{j\}(:, :, d)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3,4,5,6,7,8$ is the orientation.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'realddt'-cfs\{j\}(:,:,d,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdt'—cfs\{j\}(:,:,d,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'realdddt'—cfs\{j\}(:,:,d,k)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.
- 'cplxdddt'—cfs\{j\}(:,:,d,k,m)
- $\mathrm{j}=1,2, \ldots$ level is the level.
- $\mathrm{d}=1,2,3$ is the orientation.
- $\mathrm{k}=1,2$ is the wavelet transform tree.
- $\mathrm{m}=1,2$ are the real and imaginary parts.
- cfs\{level+1\}(:,:) are the lowpass, or scaling, coefficients.

More About

- "Critically Sampled and Oversampled Wavelet Filter Banks"

See Also
dddtree | dddtree2 | dddtreecfs
Introduced in R2013b

qmf

Scaling and Wavelet Filter

Syntax

```
Y = qmf(X,P)
Y = qmf(X)
Y = qmf(X,0)
```


Description

$Y=q m f(X, P)$ changes the signs of the even index entries of the reversed vector filter coefficients X if P is even. If P is odd the same holds for odd index entries. $Y=q m f(X)$ is equivalent to $Y=q m f(X, 0)$.

Let x be a finite energy signal. Two filters F_{0} and F_{1} are quadrature mirror filters (QMF) if, for any x,

$$
\left\|y_{0}\right\|^{2}+\left\|y_{1}\right\|^{2}=\|x\|^{2}
$$

where y_{0} is a decimated version of the signal x filtered with F_{0} so y_{0} defined by $x_{0}=$ $F_{0}(x)$ and $y_{0}(n)=x_{0}(2 n)$, and similarly, y_{1} is defined by $x_{1}=F_{1}(x)$ and $y_{1}(n)=x_{1}(2 n)$. This property ensures a perfect reconstruction of the associated two-channel filter banks scheme (see Strang-Nguyen p. 103).

For example, if F_{0} is a Daubechies scaling filter and $F_{l}=\mathrm{qmf}\left(F_{0}\right)$, then the transfer functions $F_{0}(z)$ and $F_{1}(z)$ of the filters F_{0} and F_{1} satisfy the condition (see the example for $d b 10)$:

$$
\left|F_{0}(z)\right|^{2}+\left|F_{1}(z)\right|^{2}=1
$$

Examples

\% Load scaling filter associated with an orthogonal wavelet. load db10;

```
subplot(321); stem(db10); title('db10 low-pass filter');
```

\% Compute the quadrature mirror filter.
qmfdb10 = qmf(db10);
subplot(322); stem(qmfdb10); title('QMF db10 filter');
\% Check for frequency condition (necessary for orthogonality):
\% abs(fft(filter))^2 + abs(fft(qmf(filter))^2 = 1 at each
\% frequency.
$m=f f t(d b 10) ;$
$m t=f f t(q m f d b 10)$;
freq $=[1:$ length $(\mathrm{db} 10)] /$ length $(\mathrm{db} 10)$;
subplot(323); plot(freq,abs(m));
title('Transfer modulus of db10')
subplot(324); plot(freq,abs(mt));
title('Transfer modulus of QMF db10')
subplot(325); plot(freq,abs(m).^2 + abs(mt).^2);
title('Check QMF condition for db10 and QMF db10')
xlabel(' abs(fft(db10)) ${ }^{\wedge} 2+\operatorname{abs}\left(f f t(q m f(d b 10))^{\wedge} 2=1 '\right)$
\% Editing some graphical properties,
\% the following figure is generated.

Check QMF condition for db 10 and QMF db10

$\operatorname{abs}(f f t(d b 10))^{\wedge} 2+a b s\left(f f t(q m f(d b 10))^{\wedge} 2=1\right.$
\% Check for orthonormality.

```
df = [db10;qmfdb10]*sqrt(2);
id = df*df'
id =
    1.0000 0.0000
    0.0000 1.0000
```


References

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

Introduced before R2006a

rbiowavf

Reverse biorthogonal spline wavelet filters

Syntax

[RF,DF] = rbiowavf(W)

Description

[RF,DF] = rbiowavf (W) returns the two scaling filters associated with the biorthogonal wavelet specified by the character vector W.
$\mathrm{W}=\mathrm{rbioNd} . \mathrm{Nr}$ ' where possible values for Nd and Nr are

$\mathrm{Nd}=1$	$\mathrm{Nr}=1,3$ or 5
$\mathrm{Nd}=2$	$\mathrm{Nr}=2,4,6$ or 8
$\mathrm{Nd}=3$	$\mathrm{Nr}=1,3,5,7$ or 9
$\mathrm{Nd}=4$	$\mathrm{Nr}=4$
$\mathrm{Nd}=5$	$\mathrm{Nr}=5$
$\mathrm{Nd}=6$	$\mathrm{Nr}=8$

The output arguments are filters.

- RF is the reconstruction filter.
- DF is the decomposition filter.

Examples

Reverse Biorthgonal Scaling Filter

Obtain the reverse biorthogonal reconstruction and decomposition scaling filters for the 'rbio3.1' wavelet. The 'rbio3.1' wavelet has 3 vanishing moments for the decomposition (analysis) wavelet and 1 vanishing moment for the reconstruction (synthesis) wavelet.

```
[RF,DF] = rbiowavf('rbio3.1');
```

The reconstruction scaling filter, RF, and the decomposition filter, DF, are equal to the filters returned by wfilters scaled by $\sqrt{2}$.

```
[LoD,HiD,LoR,HiR] = wfilters('rbio3.1');
```

max (abs(sqrt(2)*DF-LoD))
$\max ($ abs (sqrt(2)*RF-LoR))
ans =

0
ans $=$
0

See Also
 biorfilt | waveinfo

Introduced before R2006a

read

Read values of WPTREE

Syntax

VARARGOUT $=\operatorname{read}(T$, VARARGIN $)$

Description

VARARGOUT $=\operatorname{read}(T$, VARARGIN $)$ is the most general syntax to read one or more property values from the fields of a WPTREE object.

The different ways to call the read function are

```
PropValue = read(T,'PropName') or
PropValue = read(T,'PropName','PropParam')
```

or any combination of the previous syntaxes:

```
[PropValue1,PropValue2, ] =
read(T,'PropName1','PropParam1','PropName2','PropParam2', )
```

where 'PropParam' is optional.
The valid choices for 'PropName' and 'PropParam' are listed in this table.

PropName	PropParam
'ent ', 'ento' or 'sizes ' (see wptree)	Without 'PropParam' or with 'PropParam' $=$ Vector of node indices, PropValue contains the entropy (or optimal entropy, or size) of the tree nodes in ascending node index order.
'cfs'	With 'PropParam' = One terminal node index. cfs = read(T, 'cfs ' , NODE) is equivalent to cfs = read(T,'data',NODE) and returns the coefficients of the terminal node NODE.

PropName	PropParam
'entName', 'entPar', 'wavName' (see wptree) or 'allcfs'	Without 'PropParam'. cfs = read(T, 'allcfs') is equivalent to cfs = read(T, 'data'). PropValue contains the desired information in ascending node index order of the tree nodes.
'wfilters' (see wfilters)	Without 'PropParam' or with 'PropParam' $=$ 'd', 'r', 'l', 'h'.
'data'	Without 'PropParam' or with 'PropParam' = One terminal node index or 'PropParam' = Column vector of terminal node indices.In this last case, PropValue is a cell array. Without 'PropParam', PropValue contains the coefficients of the tree nodes in ascending node index order.

Examples

```
% Create a wavelet packet tree.
x = rand(1,512);
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);
plot(t);
% Click the node (3,0), (see the plot function).
1% Read values.
sAll = read(t,'sizes');
sNod = read(t,'sizes',[0,4,5]);
eAll = read(t,'ent');
eNod = read(t,'ent',[0,4,5]);
dAll = read(t,'data');
dNod = read(t,'data',[4;5]);
[lo_D,hi_D,lo_R,hi_R] = read(t,'wfilters');
[lo_D,lo_R,hi_D,hi_R] = read(t,'wfilters','l','wfilters','h');
[ent,ento,cfs4,cfs5] = read(t,'ent','ento','cfs',4,'cfs',5);
```


See Also

disp | get | set | wptree | write

Introduced before R2006a

readtree

Read wavelet packet decomposition tree from figure

Syntax

$\mathrm{T}=\operatorname{readtree}(F)$

Description

$\mathrm{T}=$ readtree (F) reads the wavelet packet decomposition tree from the figure whose handle is F.

Examples

```
% Create a wavelet packet tree.
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db2');
% Display the generated tree in a Wavelet Packet 1-D GUI window.
fig = drawtree(t);
```


$t=$ readtree (fig);
plot (t)
\% Click the node $(3,0)$, (see the plot function).

See Also
 drawtree

Introduced before R2006a

scal2frq

Scale to frequency

Syntax

```
F = scal2frq(A,'wname',DELTA)
scal2frq(A,'wname')
scal2frq(A,'wname',1)
```


Description

F = scal2frq(A, 'wname', DELTA) returns the pseudo-frequencies corresponding to the scales given by A and the wavelet function 'wname' (see wavefun for more information) and the sampling period DELTA.
scal2frq(A,'wname') is equivalent to scal2frq(A,'wname', 1).
There is only an approximate answer for the relationship between scale and frequency.
In wavelet analysis, the way to relate scale to frequency is to determine the center frequency of the wavelet, F_{c}, and use the following relationship.

$$
F_{a}=\frac{F_{c}}{a \cdot \Delta}
$$

where

- $\quad a$ is a scale.
- Δ is the sampling period.
- F_{c} is the center frequency of a wavelet in Hz .
- F_{a} is the pseudo-frequency corresponding to the scale a, in Hz .

The idea is to associate with a given wavelet a purely periodic signal of frequency F_{c}. The frequency maximizing the Fourier transform of the wavelet modulus is F_{c}. centfrq computes the center frequency for a specified wavelet.

Some examples of the correspondence between the center frequency and the wavelet are shown in the following figure.

Center Frequencies for Real and Complex Wavelets

As you can see, the center frequency-based approximation captures the main wavelet oscillations. Therefore, the center frequency is a convenient and simple characterization of the dominant frequency of the wavelet.

Dilating the wavelet by a, changes the center frequency to F_{c} / a. If the underlying sampling period is Δ, the scale a corresponds to the frequency

$$
F_{a}=\frac{F_{c}}{a \cdot \Delta}
$$

scal2frq computes this correspondence.

Examples

Scales To Frequencies

Construct a vector of scales with 10 voices per octave over five octaves. Assume the data are sampled at 10 kHz .

```
voicesperoctave = 10;
```

numoctaves = 5;

```
a0 = 2^(1/voicesperoctave);
```

Fs = 1e4;
scales = ...
a0.^(voicesperoctave:1/voicesperoctave: numoctaves*voicesperoctave);

Convert the scales to approximate frequencies in hertz for the Morlet wavelet.

```
Frq = scal2frq(scales,'morl',1/Fs);
```

Determine the corresponding periods. Construct a table with the scales, the corresponding frequencies, and periods. Display the smallest 20 scales along with their corresponding frequencies and periods.

```
Frq = Frq(:);
scales = scales(:);
T = [scales.*(1/Fs) Frq 1./Frq];
T = array2table(T,'VariableNames',{'Scale','Frequency','Period'});
T(1:20,:)
ans =
```

Scale	Frequency	Period
0.0002	4062.5	0.00024615
0.00020139	4034.4	0.00024787
0.00020279	4006.6	0.00024959
0.0002042	3978.9	0.00025133
0.00020562	3951.4	0.00025307
0.00020705	3924.1	0.00025483
0.00020849	3897	0.00025661
0.00020994	3870.1	0.00025839
0.0002114	3843.4	0.00026019
0.00021287	3816.8	0.000262
0.00021435	3790.4	0.00026382
0.00021585	3764.3	0.00026566
0.00021735	3738.3	0.0002675
0.00021886	3712.4	0.00026936
0.00022038	3686.8	0.00027124
0.00022191	3661.3	0.00027312
0.00022346	3636	0.00027502
0.00022501	3610.9	0.00027694
0.00022658	3586	0.00027886
0.00022815	3561.2	0.0002808

Plot CWT with Frequencies in a Contour Plot

The example shows how to create a contour plot of the CWT using approximate frequencies in Hz .

Create a signal consisting of two sine waves with disjoint support in additive noise. Assume the signal is sampled at 1 kHz .

```
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = 1.5* cos(2*pi*100*t).*(t<0.25)+1.5* cos(2*pi*50*t).*(t>0.5 & t<=0.75);
x = x+0.05*randn(size(t));
```

Obtain the CWT of the input signal and plot the result.

```
[cfs,f] = cwt(x,Fs);
contour(t,f,abs(cfs).^2);
axis tight;
grid on;
```

```
xlabel('Time');
ylabel('Approximate Frequency (Hz)');
title('CWT with Time vs Frequency');
```

CWT with Time vs Frequency

References

Abry, P. (1997), Ondelettes et turbulence. Multirésolutions, algorithmes de décomposition, invariance d'échelles, Diderot Editeur, Paris.

See Also
 centfrq

Introduced before R2006a

set

WPTREE field contents

Syntax

```
T = set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2, ...)
```


Description

T = set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2, ...) sets the content of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can set the subfield contents, giving the name of these subfields as 'FieldName' values.

The valid choices for 'FieldName ' are

'dtree'	DTREE parent object
'wavInfo'	Structure (wavelet information)

The fields of the wavelet information structure, 'wavInfo', are also valid for 'FieldName':

'wavName'	Wavelet name
'Lo_D'	Low Decomposition filter
'Hi_D'	High Decomposition filter
'Lo_R'	Low Reconstruction filter
'Hi_R'	High Reconstruction filter

'entInfo'	Structure (entropy information)

The fields of the entropy information structure, 'entInfo', are also valid for 'FieldName':

'entName'	Entropy name
'entPar'	Entropy parameter

Or fields of DTREE parent object:

'ntree '	NTREE parent object
'allNI '	All nodes information
'terNI '	Terminal nodes information

Or fields of NTREE parent object:

'wtbo '	WTBO parent object
'order'	Order of the tree
'depth '	Depth of the tree
'spsch'	Split scheme for nodes
'tn'	Array of terminal nodes of the tree

Or fields of WTBO parent object:

'wtboInfo'	Object information
'ud'	Userdata field

Caution The set function should only be used to set the field ' ud'.

See Also

disp | get | read | write

Introduced before R2006a

shanwavf

Complex Shannon wavelet

Syntax

[PSI, X] = shanwavf(LB, UB,N,FB,FC)

Description

[PSI, X] = shanwavf(LB, UB, N, FB,FC) returns values of the complex Shannon wavelet. The complex Shannon wavelet is defined by a bandwidth parameter FB, a wavelet center frequency FC, and the expression

```
PSI(X) = (FB^0.5)*(sinc(FB*X).*exp(2*i*pi*FC*X))
```

on an N point regular grid in the interval [LB, UB].
FB and FC must be such that FC > 0 and FB > 0 .
Output arguments are the wavelet function PSI computed on the grid X.

Examples

Complex Shannon Wavelet

Obtain and plot a complex Shannon wavelet. Set the bandwidth and center frequency parameters.

```
fb = 1; fc = 1.5;
```

Set the effective support and number of sample points.

```
lb = -20;
ub = 20;
n = 1000;
```

Obtain the complex-valued Shannon wavelet and plot the real and imaginary parts. [psi,x] = shanwavf(lb,ub,n,fb,fc);

```
subplot(211)
plot(x,real(psi))
title('Complex Shannon wavelet')
xlabel('Real part');
grid on;
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part')
grid on;
```

Complex Shannon wavelet

References

Teolis, A. (1998), Computational signal processing with wavelets, Birkäuser, p. 62.

See Also
 waveinfo

Introduced before R2006a

sw†

Discrete stationary wavelet transform 1-D

Syntax

```
SWC = swt(X,N,'wname')
SWC = swt(X,N,Lo_D,Hi_D)
```


Description

swt performs a multilevel 1-D stationary wavelet decomposition using either a specific orthogonal wavelet ('wname', see wfilters for more information) or specific orthogonal wavelet decomposition filters.

SWC = swt (X,N, 'wname') computes the stationary wavelet decomposition of the signal X at level N, using 'wname'.
N must be a strictly positive integer (see wmaxlev for more information) and length (X) must be a multiple of 2^{N}.

SWC $=\operatorname{swt}\left(X, N, L o _D, H i _D\right)$ computes the stationary wavelet decomposition as above, given these filters as input:

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.
The output matrix SWC contains the vectors of coefficients stored row-wise:
For $1 \leq i \leq N$, the output matrix SWC(i,:) contains the detail coefficients of level i and $\operatorname{SWC}(\mathrm{N}+1,:)$ contains the approximation coefficients of level N .
[SWA, SWD] = swt () computes approximations, SWA, and details, SWD, stationary wavelet coefficients.

The vectors of coefficients are stored row-wise:
For $1 \leq i \leq N$, the output matrix SWA(i,:) contains the approximation coefficients of level i and the output matrix SWD(i,:) contains the detail coefficients of level i.

Note swt is defined using dwt with periodic extension.

Examples

\% Load original 1D signal.
load noisbloc; s = noisbloc;
\% Perform SWT decomposition at level 3 of s using db1.
[swa,swd] = swt(s,3,'db1');
\% Plots of SWT coefficients of approximations and details
\% at levels 3 to 1.
\% Using some plotting commands,
\% the following figure is generated.

SWT Coefs: approx. at levels 3,2 and 1

More About

Algorithms

Given a signal s of length N, the first step of the SWT produces, starting from s, two sets of coefficients: approximation coefficients $c A_{1}$ and detail coefficients $c D_{1}$. These vectors are obtained by convolving s with the low-pass filter Lo_D for approximation, and with the high-pass filter Hi_D for detail.

More precisely, the first step is

where $\quad \mathrm{X}$ Convolve with filter X

Note $c A_{1}$ and $c D_{1}$ are of length N instead of $\mathrm{N} / 2$ as in the DWT case.

The next step splits the approximation coefficients $c A_{1}$ in two parts using the same scheme, but with modified filters obtained by upsampling the filters used for the previous step and replacing s by $c A_{1}$. Then, the SWT produces $c A_{2}$ and $c D_{2}$. More generally,

One-Dimensional SWT

Decomposition step

Initialization $c A_{0}=s$

Initialization $F_{0}=L o_{-} D \quad$ where $\uparrow 2$ Upsample

Initialization $G_{0}=H i _D$

References

Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform and some statistical applications," Lecture Notes in Statistics, 103, pp. 281-299.

Coifman, R.R.; Donoho, D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp. 125-150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

See Also

dwt | wavedec

Introduced before R2006a

swt2

Discrete stationary wavelet transform 2-D

Syntax

```
SWC = swt2(X,N,'wname')
[A,H,V,D] = swt2(X,N,'wname')
SWC = swt2(X,N,Lo_D,Hi_D)
[A,H,V,D] = swt2(X,N,Lo_D,Hi_D)
```


Description

swt2 performs a multilevel 2-D stationary wavelet decomposition using either a specific orthogonal wavelet (' wname '- see wfilters for more information) or specific orthogonal wavelet decomposition filters.

SWC $=\operatorname{swt2}(\mathrm{X}, \mathrm{N}, '$ wname') or $[\mathrm{A}, \mathrm{H}, \mathrm{V}, \mathrm{D}]=\operatorname{swt2(\mathrm {X},\mathrm {N},'\text {wname')computethe}}$ stationary wavelet decomposition of the matrix X at level N, using 'wname'.

N must be a strictly positive integer (see wmaxlev for more information), and 2^{N} must divide size ($X, 1$) and size ($X, 2$).

Outputs [A, H, V, D] are 3-D arrays, which contain the coefficients:

- For $1 \leq i \leq N$, the output matrix $A(:,:, i)$ contains the coefficients of approximation of level i.
- The output matrices $\mathrm{H}(:,:, \mathrm{i}), \mathrm{V}(:,:, i)$ and $\mathrm{D}(:,:, \mathrm{i})$ contain the coefficients of details of level i (horizontal, vertical, and diagonal):

```
SWC = [H(:,:,1:N) ; V(:,:,1:N) ; D(:,:,1:N) ; A(:,:,N)]
```

SWC $=$ swt2(X,N,Lo_D,Hi_D) or $[A, H, V, D]=\operatorname{swt2}\left(X, N, L o _D, H i _D\right)$, computes the stationary wavelet decomposition as in the previous syntax, given these filters as input:

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Note swt2 is defined using dwt with periodic extension.

Examples

\% Load original image.
load nbarb1;
\% Image coding.
nbcol = size(map,1);
cod_X = wcodemat(X, nbcol);
\% Visualize the original image.
subplot(221)
image(cod_X)
title('Original image');
colormap(map)
\% Perform SWT decomposition
\% of X at level 3 using sym4.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');
\% Visualize the decomposition.

```
for k = 1:3
```

\% Images coding for level k.
cod_ca = wcodemat(ca(:,:,k), nbcol);
cod_chd = wcodemat(chd(:,:,k),nbcol);
cod_cvd = wcodemat(cvd(:,:,k),nbcol);
cod_cdd = wcodemat(cdd(:,:,k), nbcol);
decl = [cod_ca,cod_chd;cod_cvd,cod_cdd];
\% Visualize the coefficients of the decomposition
\% at level k.
subplot (2, $2, k+1$)
image(decl)
title(['SWT dec.: approx. ', ...
'and det. coefs (lev. ', num2str(k),')']);

```
    colormap(map)
end
% Editing some graphical properties,
% the following figure is generated.
```


More About

Tips

When X represents an indexed image, X is an m-by- n matrix and the output arrays SWC or $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}$, and cD are m-by-n-by-p arrays.

When X represents a truecolor image, it becomes an m-by-n-by- 3 array. This array is an m-by-n-by- 3 array, where each m-by-n matrix represents a red, green, or blue color plane
concatenated along the third dimension. The output arrays SWC or $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}$, and cD are m-by-n-by-p-by- 3 arrays.

For more information on image formats, see the image and imfinfo reference pages.

Algorithms

For images, an algorithm similar to the one-dimensional case is possible for twodimensional wavelets and scaling functions obtained from one-dimensional ones by tensor product.

This kind of two-dimensional SWT leads to a decomposition of approximation coefficients at level j in four components: the approximation at level $j+1$, and the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition step for images:

Two-Dimen sional SWT

Decomposition step

where
X Convolve with filter X the rows of the entry columns X Convolve with filter X the columns of the entry

Initialization $c A_{0}=s$ for the decomposition initialization

Initialization $F_{0}=L o_{-} D$ where 42 Upsample

Initialization $G_{0}=H i_{-} D$

Note $\quad \operatorname{size}\left(c A_{j}\right)=\operatorname{size}\left(c D_{j}^{(h)}\right)=\operatorname{size}\left(c D_{j}^{(1)}\right)=\operatorname{size}\left(c D_{j}^{(d)}\right)=s$
where $s=$ size of the analyzed image

References

Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform and some statistical applications," Lecture Notes in Statistics, 103, pp. 281-299.

Coifman, R.R.; Donoho, D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp. 125-150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

See Also
dwt2 | iswt2 | wavedec2
Introduced before R2006a

symaux

Symlet wavelet filter computation

Syntax

```
W = SYMAUX(N,SUMW)
W = SYMAUX(N)
W = SYMAUX(N,1)
W = SYMAUX (N,0)
W = SYMAUX(N,1)
```


Description

Symlets are the Äúleast asymmetricÄù Daubechies wavelets.
$W=$ SYMAUX (N, SUMW) is the order N Symlet scaling filter such that SUM $(W)=$ SUMW.
Possible values for N are $1,2,3, \ldots$

Note Instability may occur when N is too large.
$W=\operatorname{SYMAUX}(N)$ is equivalent to $W=\operatorname{SYMAUX}(N, 1)$.
$W=\operatorname{SYMAUX}(N, 0)$ is equivalent to $W=\operatorname{SYMAUX}(N, 1)$.

Examples

```
% Generate wdb4 the order 4 Daubechies scaling filter.
wdb4 = dbaux(4)
wdb4 =
    Columns 1 through 7
    0.1629
```

Column 8
-0.0075

```
% wdb4 is a solution of the equation: P = conv(wrev(w),w)*2,
% where P is the "Lagrange trous" filter for N=4.
% wdb4 is a minimum phase solution of the previous equation,
% based on the roots of P (see dbaux).
P = conv(wrev(wdb4),wdb4)*2;
% Generate wsym4 the order 4 symlet scaling filter.
% The Symlets are the "least asymmetric" Daubechies'
% wavelets obtained from another choice between the roots of P.
wsym4 = symaux(4)
wsym4 =
```

Columns 1 through 7

0.0228	-0.0089	-0.0702	0.2106	0.5683	0.3519	-0.0210

Column 8
-0.0536
\% Compute conv(wrev(wsym4), wsym4) * 2 and check that wsym4
\% is another solution of the equation $P=\operatorname{conv}(w r e v(w), w) * 2$.
Psym $=$ conv(wrev(wsym4), wsym4)*2;
err $=\operatorname{norm}(P-P s y m)$
err =
7.4988e-016

See Also

symwavf | wfilters

Introduced before R2006a

symwavf

Symlet wavelet filter

Syntax

$F=\operatorname{symwavf}(W)$

Description

$F=\operatorname{symwavf}(W)$ returns the scaling filter associated with the symlet wavelet specified by the character vector W where $W=$ 'symN'. Possible values for N are $2,3, \ldots, 45$.

Examples

```
% Compute the scaling filter corresponding to wavelet sym4.
w = symwavf('sym4')
w =
    Columns 1 through 7
            0.0228 -0.0089 -0.0702 0.2106 0.5683 0.3519 -0.0210
    Column 8
        -0.0536
```

See Also
symaux | waveinfo

Introduced before R2006a

thselect

Threshold selection for de-noising

Syntax

THR $=$ thselect ($\mathrm{X}, \mathrm{TPTR}$)

Description

thselect is a one-dimensional de-noising oriented function.
THR = thselect (X,TPTR) returns threshold X -adapted value using selection rule defined by character vector TPTR.

Available selection rules are

- TPTR = 'rigrsure', adaptive threshold selection using principle of Stein's Unbiased Risk Estimate.
- TPTR = 'heursure', heuristic variant of the first option.
- TPTR = 'sqtwolog', threshold is sqrt(2*log(length $(X))$).
- TPTR = 'minimaxi', minimax thresholding.

Threshold selection rules are based on the underlying model $y=f(t)+e$ where e is a white noise $N(0,1)$. Dealing with unscaled or nonwhite noise can be handled using rescaling output threshold THR (see SCAL parameter in wden for more information).

Available options are

- tptr = 'rigrsure' uses for the soft threshold estimator, a threshold selection rule based on SteinÄôs Unbiased Estimate of Risk (quadratic loss function). One gets an estimate of the risk for a particular threshold value (t). Minimizing the risks in (t) gives a selection of the threshold value.
- tptr = 'sqtwolog' uses a fixed-form threshold yielding minimax performance multiplied by a small factor proportional to log(length(X)).
- tptr = 'heursure' is a mixture of the two previous options. As a result, if the signal to noise ratio is very small, the SURE estimate is very noisy. If such a situation is detected, the fixed form threshold is used.
- tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax performance for mean square error against an ideal procedure. The minimax principle is used in statistics in order to design estimators. Since the de-noised signal can be assimilated to the estimator of the unknown regression function, the minimax estimator is the one that realizes the minimum of the maximum mean square error obtained for the worst function in a given set.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Generate Gaussian white noise.
$x=\operatorname{randn}(1,1000)$;
\% Find threshold for each selection rule.
\% Adaptive threshold using SURE.
thr = thselect(x,'rigrsure')
\% Fixed form threshold.
thr = thselect(x,'sqtwolog')
\% Heuristic variant of the first option.
thr = thselect(x,'heursure')
\% Minimax threshold.
thr = thselect(x,'minimaxi')

References

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L., I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

See Also

wden

Introduced before R2006a

tnodes

Determine terminal nodes

Syntax

```
N = tnodes(T)
N = tnodes(T,'deppos')
[N,K] = tnodes(T)
[N,K] = tnodes(T,'deppos'), M = N(K)
```


Description

tnodes is a tree-management utility.
$\mathrm{N}=$ tnodes (T) returns the indices of terminal nodes of the tree $T . \mathrm{N}$ is a column vector.
The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$\mathrm{N}=$ tnodes(T, 'deppos') returns a matrix N , which contains the depths and positions of terminal nodes.
$N(i, 1)$ is the depth of the i-th terminal node. $N(i, 2)$ is the position of the i-th terminal node.

For $[\mathrm{N}, \mathrm{K}]=\operatorname{tnodes}(T)$ or $[\mathrm{N}, \mathrm{K}]=\operatorname{tnodes(T,'\operatorname {deppos}'),~} \mathrm{M}=\mathrm{N}(\mathrm{K})$ are the indices reordered as in tree T, from left to right.

Examples

```
% Create initial tree.
ord = 2;
t = ntree(ord,3); % Binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```


\% Change Node Label from Depth_Position to Index
\% (see the plot function).

\% List terminal nodes (index).
tnodes(t)
ans $=$
4
5
7
8
13
14
\% List terminal nodes (Depth_Position). tnodes(t,'deppos')
ans =
$2 \quad 1$
22
30
31

36
37
\section*{See Also}
leaves | noleaves | wtreemgr
Introduced before R2006a

treedpth

Tree depth

Syntax

$\mathrm{D}=\operatorname{treedpth}(T)$

Description

treedpth is a tree-management utility.
$\mathrm{D}=$ treedpth (T) returns the depth D of the tree T.

Examples

\% Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);
\% Plot tree t.
plot(t)

[^3]
See Also

wtreemgr
Introduced before R2006a

treeord

Tree order

Syntax

ORD $=$ treeord (T)

Description

treeord is a tree-management utility.
ORD $=$ treeord (T) returns the order ORD of the tree T.

Examples

\% Create binary tree (tree of order 2) of depth 3. t = ntree (2,3);
\% Plot tree t. plot(t)

[^4]
See Also

wtreemgr
Introduced before R2006a

upcoef

Direct reconstruction from 1-D wavelet coefficients

Syntax

```
Y = upcoef(0,X,'wname',N)
Y = upcoef(0,X,'wname',N,L)
Y = upcoef(0,X,Lo_R,Hi_R,N)
Y = upcoef(0,X,Lo_R,Hi_R,N,L)
Y = upcoef(O,X,'wname'')
Y = upcoef(0,X,'wname'',1)
Y = upcoef(0,X,Lo_R,Hi_R)
Y = upcoef(0,X,Lo_R,Hi_R,1)
```


Description

upcoef is a one-dimensional wavelet analysis function.
$Y=\operatorname{upcoef}(0, X$, 'wname ',$N)$ computes the N-step reconstructed coefficients of vector X.
'wname ' is a character vector containing the wavelet name. See wfilters for more information.

N must be a strictly positive integer.
If $0=$ ' a ', approximation coefficients are reconstructed.
If $0=$ ' d ', detail coefficients are reconstructed.
$Y=\operatorname{upcoef}(0, X$, 'wname' $, N, L)$ computes the N-step reconstructed coefficients of vector X and takes the length- L central portion of the result.

Instead of giving the wavelet name, you can give the filters.
For $Y=\operatorname{upcoef}\left(0, X, L o _R, H i _R, N\right)$ or $Y=\operatorname{upcoef}\left(0, X, L o _R, H i _R, N, L\right)$, Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.

```
Y = upcoef(0,X,'wname'') is equivalent to Y = upcoef(0,X,'wname'',1).
Y = upcoef(0,X,Lo_R,Hi_R) is equivalent to Y = upcoef(0,X,Lo_R,Hi_R,1).
```


Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Approximation signals, obtained from a single coefficient \% at levels 1 to 6.
cfs $=$ [1]; \% Decomposition reduced a single coefficient. essup $=10$; \% Essential support of the scaling filter db6. figure(1)
for $i=1: 6$
\% Reconstruct at the top level an approximation
\% which is equal to zero except at level i where only
\% one coefficient is equal to 1.
rec $=$ upcoef('a',cfs,'db6',i);
\% essup is the essential support of the
\% reconstructed signal.
\% rec(j) is very small when j is \geq essup.
ax = subplot(6,1,i), h = plot(rec(1:essup));
set(ax,'xlim',[1 325]);
essup $=$ essup*2;
end
subplot (611)
title(['Approximation signals, obtained from a single ' ... 'coefficient at levels 1 to 6'])
\% Editing some graphical properties,
\% the following figure is generated.

Approximation signals, obtained from a single coefficient at levels 1 to 6

\% The same can be done for details.
\% Details signals, obtained from a single coefficient $\%$ at levels 1 to 6.
cfs = [1];
mi $=12$; ma $=30 ; \quad \%$ Essential support of
\% the wavelet filter db6.
rec $=$ upcoef('d',cfs,'db6',1);
figure(2)
subplot(611), plot(rec(3:12))
for $i=2: 6$
\% Reconstruct at top level a single detail
\% coefficient at level i.
rec $=$ upcoef('d',cfs,'db6',i);
subplot(6,1,i), plot(rec(mi*2^(i-2):ma*2^(i-2)))
end
subplot (611)
title(['Detail signals obtained from a single ' ... 'coefficient at levels 1 to 6'])
\% Editing some graphical properties,
\% the following figure is generated.

Detail signals obtained from a single coefficient at levels 1 to 6

More About

Algorithms

upcoef is equivalent to an N time repeated use of the inverse wavelet transform.

See Also

idwt

Introduced before R2006a

upcoef2

Direct reconstruction from 2-D wavelet coefficients

Syntax

```
Y = upcoef2(0,X,'wname',N,S)
Y = upcoef2(O,X,Lo_R,Hi_R,N,S)
Y = upcoef2(O,X,'wname',N)
Y = upcoef2(O,X,Lo_R,Hi_R,N)
Y = upcoef2(0,X,'wname')
Y = upcoef2(0,X,'wname',1)
Y = upcoef2(0,X,Lo_R,Hi_R)
Y = upcoef2(0,X,Lo_R,Hi_R,1)
```


Description

upcoef2 is a two-dimensional wavelet analysis function.
$Y=$ upcoef2($0, X$, 'wname' $, N, S$) computes the N-step reconstructed coefficients of matrix X and takes the central part of size S. 'wname ' is a character vector containing the name of the wavelet. See wfilters for more information.

If $0=$ ' a^{\prime}, approximation coefficients are reconstructed; otherwise if $0=$ ' h ' ('v' or ' d ', respectively), horizontal (vertical or diagonal, respectively) detail coefficients are reconstructed. N must be a strictly positive integer.

Instead of giving the wavelet name, you can give the filters.
For $Y=\operatorname{upcoef} 2\left(0, X, L o _R, H i _R, N, S\right)$ is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.
$Y=\operatorname{upcoef} 2(0, X, '$ wname $', N)$ or $Y=\operatorname{upcoef} 2\left(0, X, L o _R, H i _R, N\right)$ returns the computed result without any truncation.

```
Y = upcoef2(0,X,'wname') is equivalent to Y = upcoef2(0,X,'wname', 1).
Y = upcoef2(0,X,Lo_R,Hi_R) is equivalent to
Y = upcoef2(0,X,Lo_R,Hi_R,1).
```


Examples

```
% The current extension mode is zero-padding (see dwtmode).
```

\% Load original image.
load woman;
\% X contains the loaded image.
\% Perform decomposition at level 2
\% of X using db4.
[c,s] = wavedec2(X,2,'db4');
\% Reconstruct approximation and details
\% at level 1, from coefficients.
\% This can be done using wrcoef2, or
\% equivalently using:
\%
\% Step 1: Extract coefficients from the
\% decomposition structure [c,s].
\%
\% Step 2: Reconstruct using upcoef2.
siz $=s(\operatorname{size}(\mathrm{~s}, 1),:) ;$
ca1 $=\operatorname{appcoef2(c,s,'db4',1);~}$
a1 = upcoef2('a',ca1,'db4',1,siz);
chd1 = detcoef2('h', c, s,1);
hd1 = upcoef2('h', chd1,'db4',1,siz);
cvd1 = detcoef2('v', c, s,1);
vd1 = upcoef2('v',cvd1,'db4',1,siz);
cdd1 $=\operatorname{detcoef2('d',~c,s,1);~}$
dd1 = upcoef2('d',cdd1,'db4',1,siz);

More About

Algorithms

See upcoef.

See Also

idwt2

Introduced before R2006a

upwlev

Single-level reconstruction of 1-D wavelet decomposition

Syntax

```
[NC,NL,CA] = upwlev(C,L,'wname')
```


Description

upwlev is a one-dimensional wavelet analysis function.
[NC,NL, CA] = upwlev(C,L,'wname') performs the single-level reconstruction of the wavelet decomposition structure [C,L] giving the new one [NC, NL] , and extracts the last approximation coefficients vector CA.
$[C, L$] is a decomposition at level $n=$ length $(L)-2$, so [NC, NL] is the same decomposition at level $n-1$ and cA is the approximation coefficients vector at level n.
'wname' is a character vector containing the wavelet name, C is the original wavelet decomposition vector, and L the corresponding bookkeeping vector (for detailed storage information, see wavedec).

Instead of giving the wavelet name, you can give the filters.
For [NC,NL, CA] $=\operatorname{upwlev}\left(C, L, L o _R, H i _R\right), L_{o}$ R is the reconstruction low-pass filter and Hi _R is the reconstruction high-pass filter.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load original one-dimensional signal.
load sumsin; s = sumsin;
\% Perform decomposition at level 3 of s using db1. [c,l] = wavedec(s,3,'db1');

```
subplot(311); plot(s);
title('Original signal s.');
subplot(312); plot(c);
title('Wavelet decomposition structure, level 3')
xlabel(['Coefs for approx. at level 3 ' ...
    'and for det. at levels 3, 2 and 1'])
% One step reconstruction of the wavelet decomposition
% structure at level 3 [c,l], so the new structure [nc,nl]
% is the wavelet decomposition structure at level 2.
[nc,nl] = upwlev(c,l,'db1');
subplot(313); plot(nc);
title('Wavelet decomposition structure, level 2')
xlabel(['Coefs for approx. at level 2 ' ...
    'and for det. at levels 2 and 1'])
% Editing some graphical properties,
% the following figure is generated.
Original signal s.
```



```
Wavelet decomposition structure, level 3
```



```
Coefs for approx. at level 3 and fordet. at levels 3, 2 and 1 Wavelet decomposition structure, level 2
```



```
Coefs for approx. at level 2 and fordet. at levels 2 and 1
```


More About

- upcoef
- wavedec

See Also

idwt

Introduced before R2006a

upwlev2

Single-level reconstruction of 2-D wavelet decomposition

Syntax

```
[NC,NS,cA] = upwlev2(C,S,'wname')
[NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R)
```


Description

upwlev2 is a two-dimensional wavelet analysis function.
$[N C, N S, C A]=$ upwlev2(C,S,'wname') performs the single-level reconstruction of wavelet decomposition structure [C, S] giving the new one [NC, NS], and extracts the last approximation coefficients matrix cA.
[C, S] is a decomposition at level $n=\operatorname{size}(S, 1)-2$, so [NC, NS] is the same decomposition at level $\mathrm{n}-1$ and $c A$ is the approximation matrix at level n.
'wname ' is a character vector containing the wavelet name, C is the original wavelet decomposition vector, and S the corresponding bookkeeping matrix (for detailed storage information, see wavedec2).

Instead of giving the wavelet name, you can give the filters.
For [NC,NS, cA] = upwlev2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction low-pass filter and $\mathrm{Hi} _\mathrm{R}$ is the reconstruction high-pass filter.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load original image.
load woman;
\% X contains the loaded image.

```
% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
sc = size(c)
sc =
    1 65536
val_s = s
val s =
    64 64
    64 64
    128 128
    256 256
% One step reconstruction of wavelet
% decomposition structure [c,s].
[nc,ns] = upwlev2(c,s,'db1');
snc = size(nc)
snc =
    1 65536
val_ns = ns
val_ns =
    128 128
    128 128
    256 256
```


See Also

```
idwt2 | upcoef2 | wavedec2
Introduced before R2006a
```


wave2lp

Laurent polynomials associated with wavelet

Syntax

[Hs,Gs,Ha,Ga] = wave2lp(W)

Description

[Hs,Gs,Ha,Ga] = wave2lp(W) returns the four Laurent polynomials associated with the wavelet W (see liftwave).

The pairs (Hs, Gs) and (Ha, Ga) are the synthesis and the analysis pair respectively.
The H -polynomials (G-polynomials) are low-pass (high-pass) polynomials.
For an orthogonal wavelet, $\mathrm{Hs}=\mathrm{Ha}$ and $\mathrm{Gs}=\mathrm{Ga}$.

Examples

```
% Get Laurent polynomials associated to the "lazy" wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('lazy')
Hs(z) = 1
Gs(z) = z^(-1)
Ha(z) = 1
Ga(z) = z^(-1)
% Get Laurent polynomials associated to the db1 wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('db1')
Hs(z) = + 0.7071 + 0.7071*z^(-1)
Gs(z) = - 0.7071 + 0.7071*z^(-1)
```

```
Ha(z) = + 0.7071 + 0.7071*z^(-1)
Ga(z) = - 0.7071 + 0.7071*z^(-1)
% Get Laurent polynomials associated to the bior1.3 wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('bior1.3')
Hs(z) = + 0.7071 + 0.7071*z^(-1)
Gs(z) = ...
        +0.08839*z^(+2) + 0.08839*z^(+1) - 0.7071 + 0.7071*z^(-1) -
0.08839*z^(-2) ...
    - 0.08839*z^(-3)
Ha(z) = ...
        - 0.08839*z^(+2) + 0.08839*z^(+1) + 0.7071 + 0.7071*z^(-1) +
0.08839*z^(-2)
        - 0.08839*Z^(-3)
Ga(z) = - 0.7071 + 0.7071*z^(-1)
```


See Also

laurpoly
Introduced before R2006a

wavedec

Multilevel 1-D wavelet decomposition

Syntax

$[\mathrm{C}, \mathrm{L}]=$ wavedec $\left(\mathrm{X}, \mathrm{N},{ }^{\prime}\right.$ wname')
[C,L] = wavedec (X,N,Lo_D,Hi_D)

Description

wavedec performs a multilevel one-dimensional wavelet analysis using either a specific wavelet ('wname') or a specific wavelet decomposition filters (Lo_D and Hi_D, see wfilters).

Note wavedec supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets.
$[C, L]=$ wavedec (X,N,'wname') returns the wavelet decomposition of the signal X at level N, using 'wname'. wavedec does not enforce a maximum level restriction. Use wmaxlev to ensure the wavelet coefficients are free from boundary effects. If boundary effects are not a concern in your application, a good rule is to set N less than or equal to fix(log2(length(X))).

The output decomposition structure contains the wavelet decomposition vector C and the bookkeeping vector L, which contains the number of coefficients by level. The structure is organized as in this level-3 decomposition example.

Deconposition:

[C,L] = wavedec (X,N,Lo_D,Hi_D) returns the decomposition structure as above, given the low- and high-pass decomposition filters you specify.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load original one-dimensional signal.
load sumsin; s = sumsin;
\% Perform decomposition at level 3 of s using db1.
$[\mathrm{c}, \mathrm{l}]=$ wavedec(s,3,'db1');
\% Using some plotting commands,
\% the following figure is generated.

Criginal signal s.

More About

Algorithms

Given a signal s of length N, the DWT consists of $\log _{2} N$ stages at most. The first step produces, starting from s, two sets of coefficients: approximation coefficients $C A_{1}$, and detail coefficients $C D_{1}$. These vectors are obtained by convolving s with the low-pass filter Lo_D for approximation, and with the high-pass filter Hi_D for detail, followed by dyadic decimation (downsampling).

More precisely, the first step is

The length of each filter is equal to $2 N$. If $n=$ length (s), the signals F and G are of length $n+2 N-1$ and the coefficients $c A_{1}$ and $c D_{1}$ are of length
floor $\left(\frac{n-1}{2}\right)+N$

The next step splits the approximation coefficients $c A_{1}$ in two parts using the same scheme, replacing s by $c A_{1}$, and producing $c A_{2}$ and $c D_{2}$, and so on

One-Dimensional DWT

Decomposition step

The wavelet decomposition of the signal s analyzed at level j has the following structure: $\left[c A_{j}, c D_{j}, \ldots, c D_{l}\right]$.

This structure contains, for $J=3$, the terminal nodes of the following tree:

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also
dwt | waveinfo | waverec | wfilters | wmaxlev
Introduced before R2006a

wavedec2

Multilevel 2-D wavelet decomposition

Syntax

$$
\begin{aligned}
{[\mathrm{C}, \mathrm{~S}] } & =\text { wavedec2(X,N,'wname') } \\
{[\mathrm{C}, \mathrm{~S}] } & =\text { wavedec2(X,N,Lo_D,Hi_D) }
\end{aligned}
$$

Description

wavedec 2 is a two-dimensional wavelet analysis function.
$[C, S]=$ wavedec2(X,N,'wname') returns the wavelet decomposition of the matrix X at level N, using the wavelet named in character vector 'wname' (see wfilters for more information).

Outputs are the decomposition vector C and the corresponding bookkeeping matrix S .
N must be a strictly positive integer (see wmaxlev for more information).
Instead of giving the wavelet name, you can give the filters.
For $[C, S]=$ wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass filter and Hi_D is the decomposition high-pass filter.

Vector C is organized as a vector with $\mathrm{A}(\mathrm{N}), \mathrm{H}(\mathrm{N}), \mathrm{V}(\mathrm{N}), \mathrm{D}(\mathrm{N}), \mathrm{H}(\mathrm{N}-1), \mathrm{V}(\mathrm{N}-1), \mathrm{D}(\mathrm{N}-1), \ldots$, $H(1), V(1), D(1)$, where A, H, V, and D are each a row vector. Each vector is the vector column-wise storage of a matrix.

- A contains the approximation coefficients
- H contains the horizontal detail coefficients
- V contains the vertical detail coefficients
- D contains the diagonal detail coefficients
-

Matrix S is such that

- $S(1,:)=$ size of approximation coefficients (N).
- $S(i,:)=$ size of detail coefficients $(N-i+2)$ for $i=2, \ldots N+1$ and $S(N+2,:)=$ size (X).

C (3n+1 sections)

Examples

Decomposition Structure

This example shows the structure of the wavedec 2 output matrices.
\% The current extension mode is zero-padding (see dwtmode).
\% Load original image.
load woman;
\% X contains the loaded image.

```
% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
% Decomposition structure organization.
sizex = size(X)
sizex =
    256 256
sizec = size(c)
```

```
sizec =
    1 65536
    val_s = s
val_s =
    64 64
    64 64
    128 128
    256 256
```


Extract and Display Image Decomposition Level

Extract and display images of wavelet decomposition level details. The resulting images are similar to the visualizations in the At level 2, with haar --> woman indexed image example in the Wavelet 2-D interactive tool. Use waveletAnalyzer to launch this tool.

```
load woman;
[c,s]=wavedec2(X,2, 'haar');
[H1,V1,D1] = detcoef2('all',c,s,1);
A1 = appcoef2(c,s,'haar',1);
V1img = wcodemat(V1,255,'mat',1);
H1img = wcodemat(H1, 255,'mat',1);
D1img = wcodemat(D1,255,'mat',1);
A1img = wcodemat(A1,255,'mat',1);
[H2,V2,D2] = detcoef2('all',c,s,2);
A2 = appcoef2(c,s,'haar',2);
V2img = wcodemat(V2,255,'mat',1);
H2img = wcodemat(H2,255,'mat',1);
D2img = wcodemat(D2,255,'mat',1);
A2img = wcodemat(A2, 255,'mat',1);
subplot(2,2,1);
imagesc(A1img);
colormap pink(255);
title('Approximation Coef. of Level 1');
subplot(2,2,2);
imagesc(H1img);
title('Horizontal detail Coef. of Level 1');
subplot(2,2,3);
imagesc(V1img);
title('Vertical detail Coef. of Level 1');
```

```
subplot(2,2,4);
imagesc(D1img);
title('Diagonal detail Coef. of Level 1');
```

Approximation Coef. of Level 1 Horizontal detail Coef. of Level 1

Vertical detail Coef. of Level 1
Diagonal detail Coef. of Level 1

figure;
subplot(2,2,1);
imagesc(A2img) ;
colormap pink(255);
title('Approximation Coef. of Level 2');
subplot (2,2,2)
imagesc(H2img) ;
title('Horizontal detail Coef. of Level 2');

```
subplot(2,2,3)
imagesc(V2img);
title('Vertical detail Coef. of Level 2');
subplot(2,2,4)
imagesc(D2img);
title('Diagonal detail Coef. of Level 2');
```


More About

Tips

When X represents an indexed image, X , as well as the output arrays $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}$, and cD are m-by- n matrices. When X represents a truecolor image, it is an m-by- n-by- 3 array, where each m-by- n matrix represents a red, green, or blue color plane concatenated along the third dimension. The size of vector C and the size of matrix S depend on the type of analyzed image.

For a truecolor image, the decomposition vector C and the corresponding bookkeeping matrix S can be represented as follows.

C (3n+1 sections)

S (n+2-by-3)
For more information on image formats, see the image and imfinfo reference pages.

Algorithms

For images, an algorithm similar to the one-dimensional case is possible for twodimensional wavelets and scaling functions obtained from one-dimensional ones by tensor product.

This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at level j in four components: the approximation at level $j+1$, and the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition step for images:

Two-Dimensional DWT

Initialization $c A_{0}=s$ for the decomposition initialization
So, for $J=2$, the two-dimensional wavelet tree has the form

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also

dwt | waveinfo | waverec2 | wfilters | wmaxlev
Introduced before R2006a

wavedec3

Multilevel 3-D wavelet decomposition

Syntax

```
WDEC = wavedec3(X,N,'wname')
WDEC = wavedec3(X,N,'wname','mode','ExtM')
WDEC = wavedec3(X,N,{LoD,HiD,LoR,HiR})
```


Description

wavedec3 is a three-dimensional wavelet analysis function.
WDEC $=$ wavedec3(X,N, 'wname') returns the wavelet decomposition of the 3-D array X at level N, using the wavelet named in character vector 'wname' or the particular wavelet filters you specify. It uses the default extension mode 'sym'. See dwtmode. N must be a positive integer.

WDEC = wavedec3(X,N,'wname','mode','ExtM') uses the specified DWT extension mode.

WDEC = wavedec3(X,N,\{LoD,HiD,LoR,HiR\}) uses the decomposition and reconstruction filters you specify in a cell array.

WDEC is the output decomposition structure, with the following fields:

sizeINI	Size of the three-dimensional array X
level	Level of the decomposition
mode	Name of the wavelet transform extension mode
filters	Structure with 4 fields, LoD, HiD, LoR, HiR, which contain the filters used for the DWT.
dec	N x 1 cell array containing the coefficients of the decomposition. N is equal to 7*WDEC. level+1.

	dec $\{1\}$ contains the lowpass component (approximation) at the level of the decomposition. The approximation is equivalent to the filtering operations ' LLL'. $\operatorname{dec}\{\mathrm{k}+2\}, \ldots, \operatorname{dec}\{\mathrm{k}+8\}$ with $\mathrm{k}=$ $0,7,14, \ldots, 7^{*}$ (WDEC. level-1) contain the 3-D wavelet coefficients for the multiresolution starting with the coarsest level when $\mathrm{k}=0$. For example, if WDEC. level=3, $\operatorname{dec}\{2\}, \ldots, \operatorname{dec}\{8\}$ contain the wavelet coefficients for level 3 ($\mathrm{k}=0$), $\operatorname{dec}\{9\}, \ldots, \operatorname{dec}\{15\}$ contain the wavelet coefficients for level $2(\mathrm{k}=7)$, and $\operatorname{dec}\{16\}, \ldots, \operatorname{dec}\{22\}$ contain the wavelet coefficients for level 1 ($k=7$ * (WDEC. level-1)). At each level, the wavelet coefficients in dec $\{\mathrm{k}$ $+2\}, \ldots, \operatorname{dec}\{k+8\}$ are in the following order: 'HLL','LHL','HHL','LLH','HLH', 'LHH','HHH'. The character vectors give the order in which the separable filtering operations are applied from left to right. For example, ' LHH ' means that the lowpass (scaling) filter with downsampling is applied to the rows of X, followed by the highpass (wavelet) filter with downsampling applied to the columns of X. Finally, the highpass filter with downsampling is applied to the 3rd dimension of X.
sizes	Successive sizes of the decomposition components

Examples

3-D Wavelet Transform

Find the 3-D DWT of a volume. Construct 8-by-8-by-8 matrix of integers 1 to 64 and make the data 3-D.

```
M = magic(8);
X = repmat(M,[\begin{array}{lll}{1}&{1}&{8}\end{array});
```

Obtain the 3-D discrete wavelet transform at level 1 using the Haar wavelet and the default whole-point symmetric extension mode.

```
wd1 = wavedec3(X,1,'db1');
```


3-D Wavelet Transform Using Specified Decomposition and Reconstruction Filters

Specify the decomposition and reconstruction filters as a cell array. Construct 8 -by-8-by- 8 matrix of integers 1 to 64 and make the data 3-D.

```
M = magic(8);
X = repmat(M,[\begin{array}{lll}{1}&{1}&{8}\end{array}]);
```

Obtain the 3-D discrete wavelet transform down to level 2 using the Daubechies extremal phase wavelet with two vanishing moments. Input the decomposition and reconstruction filters as a cell array. Use the periodic extension mode.

```
[LoD,HiD,LoR,HiR] = wfilters('db2');
wd2 = wavedec3(X,2,{LoD,HiD,LoR,HiR},'mode','per');
```


Coefficient Order in 3-D Wavelet Transform

Compare the output of wavedec3 and dwt3 to illustrate the ordering of the 3-D wavelet coefficients described in the dec field description.

```
X = reshape(1:512,8,8,8);
dwtOut = dwt3(X,'db1','mode','per');
wdec = wavedec3(X,1,'db1','mode','per');
max(abs((wdec.dec{4}(:)-dwt0ut.dec{2,2,1}(:))))
max(abs((wdec.dec{5}(:)-dwtOut.dec{1,1,2}(:))))
ans =
    0
ans =
    0
```

```
See Also
dwt3 | dwtmode | waveinfo | waverec3 | wfilters | wmaxlev
Introduced in R2010a
```


wavefun

Wavelet and scaling functions

Syntax

```
[PHI,PSI,XVAL] = wavefun('wname',ITER)
[PHI1,PSI1,PHI2,PSI2,XVAL] = wavefun('wname',ITER)
[PHI,PSI,XVAL] = wavefun('wname',ITER)
[PSI,XVAL] = wavefun('wname',ITER)
[...] = wavefun(wname,A,B)
[...] = wavefun('wname',max(A,B))
[...] = wavefun('wname',0)
[...] = wavefun('wname',8,0)
[...] = wavefun('wname')
[...] = wavefun('wname',8)
```


Description

The function wavefun returns approximations of the wavelet function 'wname' and the associated scaling function, if it exists. The positive integer ITER determines the number of iterations computed; thus, the refinement of the approximations.

For an orthogonal wavelet:

[PHI,PSI, XVAL] = wavefun('wname', ITER) returns the scaling and wavelet functions on the points grid XVAL.

For a biorthogonal wavelet:

[PHI1,PSI1,PHI2,PSI2,XVAL] = wavefun('wname',ITER) returns the scaling and wavelet functions both for decomposition (PHI1,PSI1) and for reconstruction (PHI2,PSI2).

For a Meyer wavelet:
[PHI,PSI,XVAL] = wavefun('wname', ITER)

For a wavelet without scaling function (e.g., Morlet, Mexican Hat, Gaussian derivatives wavelets or complex wavelets):
[PSI,XVAL] = wavefun('wname',ITER)
[...] = wavefun(wname, A, B), where A and B are positive integers, is equivalent to
$[. .]=$. wavefun('wname', $\max (A, B))$, and draws plots.
When A is set equal to the special value 0 ,

- [...] = wavefun('wname', 0) is equivalent to
- [...] = wavefun('wname', 8,0).
- [...] = wavefun('wname') is equivalent to
- [...] = wavefun('wname', 8).

The output arguments are optional.

Examples

On the following graph, 10 piecewise linear approximations of the sym4 wavelet obtained after each iteration of the cascade algorithm are shown.

```
% Set number of iterations and wavelet name.
iter = 10;
wav = 'sym4';
% Compute approximations of the wavelet function using the
% cascade algorithm.
for i = 1:iter
    [phi,psi,xval] = wavefun(wav,i);
    plot(xval,psi);
    hold on
end
title(['Approximations of the wavelet ',wav, ...
    for 1 to ',num2str(iter),' iterations']);
hold off
```


More About

Algorithms

For compactly supported wavelets defined by filters, in general no closed form analytic formula exists.

The algorithm used is the cascade algorithm. It uses the single-level inverse wavelet transform repeatedly.

Let us begin with the scaling function ϕ.
Since ϕ is also equal to $\phi_{0,0}$, this function is characterized by the following coefficients in the orthogonal framework:

- $<\phi, \phi_{0, n}>=1$ only if $n=0$ and equal to 0 otherwise
- $<\phi, \Psi_{-j, k}>=0$ for positive j, and all k.

This expansion can be viewed as a wavelet decomposition structure. Detail coefficients are all zeros and approximation coefficients are all zeros except one equal to 1 .

Then we use the reconstruction algorithm to approximate the function ϕ over a dyadic grid, according to the following result:

For any dyadic rational of the form $x=n 2^{-j}$ in which the function is continuous and where j is sufficiently large, we have pointwise convergence and

$$
\left\lvert\, \phi(x)-2^{\frac{j}{2}}\left\langle\phi, \phi_{-j, n 2^{j-\nu}}\right| \leq C .2^{-j \alpha}\right.
$$

where C is a constant, and α is a positive constant depending on the wavelet regularity.
Then using a good approximation of ϕ on dyadic rationals, we can use piecewise constant or piecewise linear interpolations η on dyadic intervals, for which uniform convergence occurs with similar exponential rate:

$$
\|\phi-\eta\|_{\infty} \leq C .2^{-j \alpha}
$$

So using a J-step reconstruction scheme, we obtain an approximation that converges exponentially towards ϕ when J goes to infinity.

Approximations are computed over a grid of dyadic rationals covering the support of the function to be approximated.

Since a scaled version of the wavelet function Ψ can also be expanded on the $\left(\phi_{-1, n}\right)_{n}$, the same scheme can be used, after a single-level reconstruction starting with the appropriate wavelet decomposition structure. Approximation coefficients are all zeros and detail coefficients are all zeros except one equal to 1 .

For biorthogonal wavelets, the same ideas can be applied on each of the two multiresolution schemes in duality.

Note This algorithm may diverge if the function to be approximated is not continuous on dyadic rationals.

References

Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp. 202Äì213.
Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

See Also
intwave | waveinfo | wfilters
Introduced before R2006a

wavefun2

Wavelet and scaling functions 2-D

Syntax

```
[PHI,PSI,XVAL] = wavefun('wname',ITER)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot')
[S,W1,W2,W3,XYVAL] = wavefun2(wname,A,B)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',max(A,B )
[S,W1,W2,W3,XYVAL] = wavefun2('wname',0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname')
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4)
```


Description

For an orthogonal wavelet 'wname ', wavefun2 returns the scaling function and the three wavelet functions resulting from the tensor products of the one-dimensional scaling and wavelet functions.

If [PHI, PSI, XVAL] = wavefun('wname', ITER), the scaling function S is the tensor product of PHI and PSI.

The wavelet functions W1, W2, and W3 are the tensor products (PHI,PSI), (PSI,PHI), and (PSI,PSI), respectively.

The two-dimensional variable XYVAL is a $2^{\text {ITER }} \times 2^{\text {ITER }}$ points grid obtained from the tensor product (XVAL,XVAL).

The positive integer ITER determines the number of iterations computed and thus, the refinement of the approximations.
[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot') computes and also plots the functions.
[S,W1,W2,W3,XYVAL] = wavefun2(wname, $\mathrm{A}, \mathrm{B})$, where A and B are positive integers, is equivalent to
$[\mathrm{S}, \mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3, \mathrm{XYVAL}]=$ wavefun2('wname', $\max (\mathrm{A}, \mathrm{B}))$. The resulting functions are plotted.

When A is set equal to the special value 0 ,

- [S,W1,W2,W3,XYVAL] = wavefun2('wname', 0) is equivalent to [S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0).
- [S,W1,W2,W3,XYVAL] = wavefun2('wname') is equivalent to [S,W1,W2,W3,XYVAL] = wavefun2('wname',4).

The output arguments are optional.

Note The wavefun2 function can only be used with an orthogonal wavelet.

Examples

On the following graph, a linear approximation of the sym4 wavelet obtained using the cascade algorithm is shown.

```
% Set number of iterations and wavelet name.
iter = 4;
wav = 'sym4';
% Compute approximations of the wavelet and scale functions using
% the cascade algorithm and plot.
[s,w1,w2,w3,xyval] = wavefun2(wav,iter,0);
```


More About

Algorithms

See wavefun for more information.

References

Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp. 202 Äì213.
Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

See Also
intwave | wavefun | waveinfo | wfilters
Introduced before R2006a

waveinfo

Wavelets information

Syntax

```
waveinfo('wname')
```


Description

waveinfo provides information on all wavelets within the toolbox.
waveinfo('wname') provides information on the wavelet family whose short name is specified by the character vector 'wname '. Available family short names are listed in the table below.

Wavelet Family Short Name	Wavelet Family Name
'haar'	Haar wavelet
'db'	Daubechies wavelets
'sym'	Symlets
'coif'	Coiflets
'bior'	Biorthogonal wavelets
'fk'	Fejer-Korovkin filters
'rbio'	Reverse biorthogonal wavelets
'meyr'	Meyer wavelet
'dmey '	Discrete approximation of Meyer wavelet
'gaus '	Gaussian wavelets
'mexh '	Mexican hat wavelet (also known as Ricker wavelet)
'morl'	Morlet wavelet
'cgau'	Complex Gaussian wavelets

Wavelet Family Short Name	Wavelet Family Name
'shan '	Shannon wavelets
'fbsp'	Frequency B-Spline wavelets
' cmor'	Complex Morlet wavelets

The family short names can also be user-defined ones (see wavemngr for more information).
waveinfo('wsys') provides information on wavelet packets.

Examples

```
waveinfo('db')
DBINFO Information on Daubechies wavelets.
Daubechies Wavelets
General characteristics: Compactly supported
wavelets with extremal phase and highest
number of vanishing moments for a given
support width. Associated scaling filters are
minimum-phase filters.
Family Daubechies
Short name db
Order N N strictly positive integer
Examples db1 or haar, db4, db15
Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible
Support width 2N-1
Filters length 2N
Regularity about 0.2 N for large N
Symmetry far from
Number of vanishing moments for psi N
Reference: I. Daubechies,
Ten lectures on wavelets CBMS, SIAM, 61, 1994, 194-202.
```


See Also
 wavemngr
 Introduced before R2006a

Wavelet Analyzer

Analyze signals and images using wavelets

Description

The Wavelet Analyzer app is an interactive tool for using wavelets to visualize and analyze signals and images. Using this app, you can:

- Perform wavelet and wavelet packet analysis
- Denoise and compress signals and images
- Design custom wavelets
- Estimate density and regression
- Perform matching pursuit analysis
- Perform image fusion

Open the Wavelet Analyzer App

- MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the app icon.
- MATLAB command prompt: Enter waveletAnalyzer

Examples

- "Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet Analyzer App"
- "DFT-Based Continuous Wavelet Analysis Using the Wavelet Analyzer App"
- "Interactive 1-D Stationary Wavelet Transform Denoising"
- "Matching Pursuit Using Wavelet Analyzer App"

More About

- "Continuous Wavelet Analysis"
- "Discrete Wavelet Analysis"

Introduced before R2006a

waveleffamilies

Wavelet families and family members

Syntax

```
waveletfamilies('f')
waveletfamilies('n')
waveletfamilies('a')
```


Description

waveletfamilies or waveletfamilies('f') displays the names of all available wavelet families.
waveletfamilies(' n ') displays the names of all available wavelets in each family.
waveletfamilies('a') displays all available wavelet families with their corresponding properties.

Examples

waveletfamilies	
===================================	
Haar	haar
Daubechies	db
Symlets	sym
Coiflets	coif
BiorSplines	bior
ReverseBior	rbio
Meyer	meyr
DMeyer	dmey
Gaussian	gaus
Mexican_hat	mexh
Morlet	morl
Complex Gaussian	cgau
Shannon	shan
Frequency B-Spline	fbsp


```
gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**
====================================
Mexican_hat mexh
====================================
Morlet morl
====================================
Complex Gaussian cgau
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
====================================
Shannon shan
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
====================================
Frequency B-Spline fbsp
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
====================================
Complex Morlet cmor
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
====================================
waveletfamilies('a')
Type of Wavelets
type = 1 - orthogonals wavelets (F.I.R.)
type = 2 - biorthogonals wavelets (F.I.R.)
type = 3 - with scale function
type = 4 - without scale function
type = 5 - complex wavelet.
Family Name : Haar
haar
1
```

```
no
no
dbwavf
Family Name : Daubechies
db
1
12 3 4 5 6 7 8 9 10 **
integer
dbwavf
Family Name : Symlets
sym
1
2 3 4 5 6 7 8 **
integer
symwavf
Family Name : Coiflets
coif
1
12345
integer
coifwavf
Family Name : BiorSplines
bior
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real
biorwavf
Family Name : ReverseBior
rbio
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real
rbiowavf
```

```
Family Name : Meyer
meyr
3
no
no
meyer
-8 8
Family Name : DMeyer
dmey
1
no
no
dmey.mat
Family Name : Gaussian
gaus
4
12 3 4 5 6 7 8 **
integer
gauswavf
-5 5
Family Name : Mexican_hat
mexh
4
no
no
mexihat
-8 8
Family Name : Morlet
morl
4
no
no
morlet
-8 8
Family Name : Complex Gaussian
cgau
5
```

```
12345 **
integer
cgauwavf
-5 5
Family Name : Shannon
shan
5
1-1.5 1-1 1-0.5 1-0.1 2-3 **
character vector
shanwavf
-20 20
Family Name : Frequency B-Spline
fbsp
5
1-1-1.5 1-1-1 1-1-0.5 2-1-1 2-1-0.5 2-1-0.1 **
character vector
fbspwavf
-20 20
Family Name : Complex Morlet
cmor
5
1-1.5 1-1 1-0.5 1-1 1-0.5 1-0.1 **
character vector
cmorwavf
-8 8
```


See Also

wavemngr

Introduced in R2008a

wavemngr

Wavelet manager

Syntax

```
wavemngr('add',FN,FSN,WT,NUMS,FILE)
wavemngr('add', FN, FSN,WT,NUMS,FILE,B)
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE)
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE,B)
```


Description

wavemngr is a type of wavelets manager. It allows you to add, delete, restore, or read wavelets.
wavemngr('add', FN, FSN, WT, NUMS, FILE) or
wavemngr('add', FN, FSN, WT, NUMS, FILE, B) or wavemngr('add', FN, FSN, WT, \{NUMS, TYPNUMS\},FILE) or wavemngr('add', FN,FSN,WT, \{NUMS, TYPNUMS \}, FILE , B), add a new wavelet family to the toolbox.

FN = Family Name (character vector)
FSN = Family Short Name (character vector of length equal or less than four characters)
WT defines the wavelet type:

- $W T=1$, for orthogonal wavelets
- $\mathrm{WT}=2$, for biorthogonal wavelets
- WT $=3$, for wavelet with scaling function
- $W T=4$, for wavelet without scaling function
- $\mathrm{WT}=5$, for complex wavelet without scaling function

If the family contains a single wavelet, NUMS $=$ ' ' . Note that for this case you specify an empty character vector.

Examples:

mexh	'

morl	'

If the wavelet is member of a finite family of wavelets, NUMS is a character vector containing a space-separated list of items representing wavelet parameters.

Example:

| bior | NUMS $=$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If the wavelet is part of an infinite family of wavelets, NUMS is a character vector containing a space-separated list of items representing wavelet parameters, terminated by the special sequence **.

Examples:

db	NUMS $={ }^{\prime} 1$

In these last two cases, TYPNUMS specifies the wavelet parameter input format: 'integer' or 'real' or 'charactervector'; the default value is 'integer'.

Examples:

db	TYPNUMS $=$ 'integer'
bior	TYPNUMS $=$ 'real'
shan	TYPNUMS $=$ 'charactervector'

FILE $=$ MAT-file or code file name (character vector). See usage in the "Examples" section.

B = [ll ub] specifies lower and upper bounds of effective support for wavelets of type = 3 , 4 , or 5 .
wavemngr('del', N), deletes a wavelet or a wavelet family. N is the Family Short Name or the Wavelet Name (in the family). N is a character vector.
wavemngr('restore') or wavemngr('restore', IN2) restores previous or initial wavelets. If nargin = 1, the previous wavelets.asc ASCII-file is restored; otherwise the initial wavelets.asc ASCII-file is restored. Here IN2 is a dummy argument.

OUT1 = wavemngr('read') returns all wavelet family names.
OUT1 = wavemngr('read', IN2) returns all wavelet names, IN2 is a dummy argument.

OUT1＝wavemngr（＇read＿asc＇）reads wavelets．asc ASCII－file and returns all wavelets information．

Examples

```
% List initial wavelets families.
    wavemngr('read')
ans =
====================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
ニニニニニニニニニニニニニニニニニニニニニニニニニニニ=ニ======
% List all wavelets.
wavemngr('read',1)
ans =
```



```
Haar
haar
====================================
Daubechies db
db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db**
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ==ニ==
Symlets sym
sym2 sym3 sym4 sym5
```

```
sym6 sym7 sym8 sym**
====================================
Coiflets coif
-----------------------------
coif1 coif2 coif3 coif4
coif5
====================================
BiorSplines bior
bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
====================================
ReverseBior rbio
rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
====================================
Meyer meyr
====================================
DMeyer dmey
====================================
Gaussian
gaus
\begin{tabular}{llll} 
gaus1 & gaus2 & gaus3 & gaus4 \\
gaus5 & gaus6 & gaus7 & gaus8
\end{tabular}
gaus8
gaus**
====================================
Mexican_hat mexh
====================================
Morlet morl
====================================
Complex Gaussian cgau
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
=====================================
Shannon
shan
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
```



```
Frequency B-Spline fbsp
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
===================================
Complex Morlet cmor
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
===================================
```

In the following example, new compactly supported orthogonal wavelets are added to the toolbox. These wavelets, which are a slight generalization of the Daubechies wavelets, are based on the use of Bernstein polynomials and are due to Kateb and Lemarié in an unpublished work.

```
% Add new family of orthogonal wavelets.
% You must define:
%
% Family Name: Lemarie
% Family Short Name: lem
% Type of wavelet: 1 (orth)
% Wavelets numbers: 12 3 4 5
% File driver: lemwavf
%
% The function lemwavf.m must be as follows:
% function w = lemwavf(wname)
% where the input argument wname is a character vector:
% wname = 'lem1' or 'lem2' ... i.e.,
% wname = sh.name + number
% and w the corresponding scaling filter.
% The addition is obtained using:
wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf');
% The ascii file 'wavelets.asc' is saved as
% 'wavelets.prv', then it is modified and
% the MAT file 'wavelets.inf' is generated.
% List wavelets families.
wavemngr('read')
ans =
```

Haar	haar
Daubechies	db
Symlets	sym
Coiflets	coif
BiorSplines	bior
ReverseBior	rbio
Meyer	meyr
DMeyer	dmey
Gaussian	gaus
Mexican_hat	mexh
Morlet	morl
Complex Gaussian	cgau
Shannon	shan
Frequency B-Spline	fbsp
Complex Morlet	cmor
Lemarie	lem
\% Remove the added family	
wavemngr('del', 'Lemarie')	
\% List wavelets families. wavemngr('read')	
ans =	
Haar	haar
Daubechies	db
Symlets	sym
Coiflets	coif
BiorSplines	bior
ReverseBior	rbio
Meyer	meyr
DMeyer	dmey
Gaussian	gaus
Mexican_hat	mexh
Morlet	morl
Complex Gaussian	cgau
Shannon	shan
Frequency B-Spline	fbsp
Complex Morlet	cmor

```
% the MAT-file 'wavelets.inf'.
wavemngr('restore');
% List restored wavelets.
wavemngr('read',1)
ans =
===================================
Haar haar
====================================
Daubechies db
\begin{tabular}{llll} 
db1 & db2 & db3 & db4 \\
db5 & db6 & db7 & db8 \\
db9 & db10 & \(d b * *\) &
\end{tabular}
====================================
Symlets sym
\begin{tabular}{llll} 
sym2 & sym3 & sym4 & sym5 \\
sym6 & sym7 & sym8 & sym＊＊
\end{tabular}
====================================
Coiflets coif
--------------------------
coif1 coif2 coif3 coif4
coif5
====================================
BiorSplines bior
bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
ニニニニニニニニニニニニニニニニニニニニニニニニニ=ニニ=======
ReverseBior rbio
rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
===================================
Meyer meyr
====================================
DMeyer dmey
```



```
Gaussian gaus
\begin{tabular}{llll} 
gaus1 & gaus2 & gaus3 & gaus4 \\
gaus5 & gaus6 & gaus7 & gaus8
\end{tabular}
====================================
Mexican_hat mexh
====================================
Morlet morl
====================================
Complex Gaussian cgau
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
====================================
Shannon shan
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
====================================
Frequency B-Spline fbsp
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
====================================
Complex Morlet cmor
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
===================================
Lemarie lem
lem1 lem2 lem3 lem4 lem5
====================================
% Restore initial wavelets.
%
% Restore the initial ascii file
% 'wavelets.ini' and initial
% MAT-file 'wavelets.bin'.
wavemngr('restore',0);
% List wavelets families.
wavemngr('read')
```

```
ans =
===================================
Haar
haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
=======ニ=ニ=========================
% Add new family of orthogonal wavelets.
wavemngr('add','Lemarie','lem',1,'1 2 3','lemwavf');
% All command line capabilities are available for
% the new wavelets.
%
% Example 1: compute the four associated filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('lem3');
% Example 2: compute scale and wavelet functions.
[phi,psi,xval] = wavefun('lem3');
% Add a new family of orthogonal wavelets: special form
% for the GUI mode.
%
% The file lemwavf allows you to compute the filter for
% any order. If you want to get a popup of the form
% 1 2 3 **, associated with the family, then wavelets are
% appended for GUI mode using:
wavemngr('restore',0);
wavemngr('add','Lemarie','lem',1,'1 2 3 **','lemwavf');
% After this sequence, all GUI capabilities are available for
% the new wavelets.
% Note that the last command allows a short cut in the
```

```
% order definition only if possible orders are integers.
```

Caution wavemngr works on the current folder. If you add a new wavelet family, it is available in this folder only.

Limitations

wavemngr allows you to add a new wavelet. You must verify that it is truly a wavelet. No check is performed either about this point or about the type of the new wavelet.

Introduced before R2006a

wavenames

Wavelet names for LWT

Syntax

W = wavenames (T)

Description

W = wavenames (T) returns a cell array that contains the name of all wavelets of type T. The valid values for T are

- 'all' - all wavelets
- 'lazy' - "lazy" wavelet
- 'orth' - orthogonal wavelets
- 'bior' - biorthogonal wavelets
$W=$ wavenames is equivalent to $W=$ wavenames('all').
Introduced before R2006a

waverec

Multilevel 1-D wavelet reconstruction

Syntax

```
X = waverec(C,L,Lo_R,Hi_R)
X = waverec(C,L,'wname')
X = appcoef(C,L,'wname',0)
```


Description

waverec performs a multilevel one-dimensional wavelet reconstruction using either a specific wavelet ('wname', see wfilters) or specific reconstruction filters (Lo_R and Hi_R). .

Note waverec supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets.
$\mathrm{X}=$ waverec (C,L,'wname') reconstructs the signal X based on the multilevel wavelet decomposition structure [C,L] and wavelet 'wname'. (For information about the decomposition structure, see wavedec.)
$X=$ waverec (C,L,Lo_R,Hi_R) reconstructs the signal X as above, using the reconstruction filters you specify. Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.

Note that $X=$ waverec (C, L, 'wname') is equivalent to $X=$ appcoef(C,L,'wname', 0).

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load original one-dimensional signal.
load leleccum; s = leleccum(1:3920); ls = length(s);
```

```
% Perform decomposition of signal at level 3 using db5.
[c,l] = wavedec(s,3,'db5');
% Reconstruct s from the wavelet decomposition structure [c,l].
a0 = waverec(c,l,'db5');
% Check for perfect reconstruction.
err = norm(s-aO)
err =
    3.2079e-09
```


See Also

```
appcoef | idwt | wavedec
Introduced before R2006a
```


waverec2

Multilevel 2-D wavelet reconstruction

Syntax

```
X = waverec2(C,S,'wname')
X = waverec2(C,S,Lo_R,Hi_R)
waverec2(wavedec2(X,N,'wname'),'wname')
X = waverec2(C,S,'wname')
X = appcoef2(C,S,'wname',0)
```


Description

X = waverec2(C,S, 'wname') performs a multilevel wavelet reconstruction of the matrix X based on the wavelet decomposition structure [C, S]. For detailed storage information, see wavedec2. 'wname' is a character vector containing the name of the wavelet. See wfilters for more information.

Instead of specifying the wavelet name, you can specify the filters.

- X = waverec2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction low-pass filter
- $\mathrm{Hi}_{-} \mathrm{R}$ is the reconstruction high-pass filter.
waverec 2 is the inverse function of wavedec 2 in the sense that the abstract statement waverec2(wavedec2(X,N,'wname'), 'wname') returns X.

```
X = waverec2(C,S,'wname') is equivalent to X = appcoef2(C,S,'wname',0).
```


Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load original image.
load woman;
\% X contains the loaded image.
\% Perform decomposition at level 2
\% of X using sym4.

```
[c,s] = wavedec2(X,2,'sym4');
% Reconstruct X from the wavelet
% decomposition structure [c,s].
a0 = waverec2(c,s,'sym4');
% Check for perfect reconstruction.
max(max(abs(X-a0)))
ans =
    2.5565e-10
```


More About

Tips

If C and S are obtained from an indexed image analysis or a truecolor image analysis, X is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

See Also
appcoef2|idwt2|wavedec2

Introduced before R2006a

waverec3

Multilevel 3-D wavelet reconstruction

Syntax

X = waverec3(WDEC)
C = waverec3(WDEC,TYPE,N)
X = waverec3(WDEC, 'a', 0)
X = waverec3(WDEC, 'ca',0)
C = waverec3(WDEC, TYPE)
C = waverec3(WDEC,TYPE,N)

Description

waverec3 performs a multilevel 3-D wavelet reconstruction starting from a multilevel 3D wavelet decomposition.
$\mathrm{X}=$ waverec3(WDEC) reconstructs the 3-D array X based on the multilevel wavelet decomposition structure WDEC. You can also use waverec3 to extract coefficients from a 3 -D wavelet decomposition.

WDEC is a structure with the fields shown in the table.
C = waverec3(WDEC, TYPE, N) reconstructs the multilevel components at level N of a 3 -D wavelet decomposition. N must be a positive integer less than or equal to the level of the decomposition.

Valid values for TYPE are:

- A group of three characters 'xyz', one per direction, with ' x ', ' y ' and ' z ' selected in the set \{'a', 'd', 'l', 'h'\} or in the corresponding uppercase set \{'A','D', 'L', ' $\left.\mathrm{H}^{\prime}\right\}$), where ' A ' (or ' L ') is a low-pass filter and ' D^{\prime} (or ' H^{\prime}) is a high-pass filter.
- The char 'd' (or 'h' or 'D' or 'H') gives the sum of all the components different from the low-pass.
- The char 'a' (or 'l' or 'A' or 'L') gives the low-pass component (the approximation at level N).

For extraction, the valid values for TYPE are the same but prefixed by 'c ' or ' C '.
$X=$ waverec3(WDEC, 'a', 0) or $X=$ waverec3(WDEC, 'ca' 0) is equivalent to $X=$ waverec 3 (WDEC). X is a reconstruction of the coefficients in WDEC at level 0.
$C=$ waverec3(WDEC,TYPE) is equivalent to $C=$ waverec3(WDEC,TYPE, N) with N equal to the level of the decomposition.

sizeINI	Size of the three-dimensional array X
level	Level of the decomposition
mode	Name of the wavelet transform extension mode
filters	Structure with 4 fields, LoD, HiD, LoR, and HiR, which contain the filters used for DWT
dec	$\mathrm{N} x 1$ cell array containing the coefficients of the decomposition. N is equal to $7 *$ WDEC. level +1 . $\operatorname{dec}\{1\}$ contains the lowpass component (approximation) at the level of the decomposition. The approximation is equivalent to the filtering operations 'LLL'. $\operatorname{dec}\{\mathrm{k}+2\}, \ldots, \operatorname{dec}\{\mathrm{k}+8\}$ with $\mathrm{k}=$ $0,7,14, \ldots, 7^{*}$ (WDEC. level-1) contain the 3-D wavelet coefficients for the multiresolution starting with the coarsest level when $\mathrm{k}=0$. For example, if WDEC. level=3, $\operatorname{dec}\{2\}, \ldots, \operatorname{dec}\{8\}$ contain the wavelet coefficients for level $3(\mathrm{k}=0)$, $\operatorname{dec}\{9\}, \ldots, \operatorname{dec}\{15\}$ contain the wavelet coefficients for level $2(k=7)$, and $\operatorname{dec}\{16\}, \ldots, \operatorname{dec}\{22\}$ contain the wavelet coefficients for level 1 ($k=7 *$ (WDEC.level-1)). At each level, the wavelet coefficients in dec $\{\mathrm{k}$ $+2\}, \ldots, \operatorname{dec}\{k+8\}$ are in the following order: 'HLL','LHL','HHL','LLH','HLH','LHH','HHH'. The character vectors give the order in which the separable filtering operations are applied from left to right. For example, ' LHH ' means that the lowpass (scaling) filter with downsampling is applied to the rows of X, followed by the

	highpass (wavelet) filter with downsampling applied to the columns of X. Finally, the highpass filter with downsampling is applied to the 3rd dimension of X.
sizes	Successive sizes of the decomposition components

Examples

Perfect Reconstruction with 3-D Discrete Wavelet Transform

Construct a 3-D matrix, obtain the wavelet transform down to level 2 using the db2 wavelet, and reconstruct the matrix to verify perfect reconstruction.

Create 3-D matrix.

```
M = magic(8);
X = repmat(M,[1 1 8]);
```

Obtain the 3-D discrete wavelet transform of the matrix and reconstruct the input based on the 3-D approximation and detail coefficients.

```
wd = wavedec3(X,2,'db2');
XR = waverec3(wd);
```

Verify perfect reconstruction using the wavelet decomposition down to level 2.

```
err1 = max(abs(X(:)-XR(:)))
```

Verify that the data matrix is the sum of the approximation and the details from levels 2 and 1.

```
A = waverec3(wd,'LLL');
% Reconstruct the sum of components different from
% the lowpass component.
D = waverec3(wd,'d');
% Check that X = A + D.
err2 = max(abs(X(:)-A(:)-D(:)))
```


Compare waverec3 and idwt3

Compare level-1 reconstructions based on the filtering operations 'LLH' using idwt3 and waverec3.

```
M = magic(8);
X = repmat(M,[\begin{array}{lll}{1}&{1}&{8}\end{array}]);
wd = wavedec3(X,2,'db2','mode','per');
dwtOut = dwt3(X,'db2');
Xr = idwt3(dwtOut,'LLH');
Xrec = waverec3(wd,'LLH',1);
norm(Xr(:)-Xrec(:))
ans =
    77.7817
```


See Also

idwt3 | waveinfo | wavedec3

Introduced in R2010a

wavsupport

Wavelet support

Syntax

[LB,UB] = wavsupport(wname)

Description

[LB, UB] = wavsupport (wname) returns the lower bound, LB, and upper bound, UB, of the support for the wavelet specified by wname. wname is any valid wavelet. For realvalued wavelets with and without scaling functions and complex-valued wavelets without scaling functions (wavelets type 3,4, and 5), the bounds indicate the effective support of the wavelet. For orthogonal and biorthogonal wavelets (type 1 and type 2), the lower and upper bounds are $-0.5^{*}(L F-1)$ and $0.5^{*}(L F-1)$, where LF is the length of the wavelet filter.

Examples

Support of Haar wavelet:

```
[LB, UB] = wavsupport('haar');
LowerBound = -0.5*(2-1);
UpperBound = 0.5*(2-1);
% Compare [LB,UB] and [LowerBound, UpperBound]
```

Effective support of complex-valued Gaussian wavelet:
[LB,UB] = wavsupport('cgau3');

See Also

wavemngr
Introduced in R2010b

wbmpen

Penalized threshold for wavelet 1-D or 2-D de-noising

Syntax

```
THR = wbmpen(C,L,SIGMA,ALPHA)
```

wbmpen(C, L, SIGMA, ALPHA, ARG)

Description

THR = wbmpen(C,L,SIGMA, ALPHA) returns global threshold THR for de-noising. THR is obtained by a wavelet coefficients selection rule using a penalization method provided by Birgé-Massart.
$[\mathrm{C}, \mathrm{L}]$ is the wavelet decomposition structure of the signal or image to be de-noised.
SIGMA is the standard deviation of the zero mean Gaussian white noise in de-noising model (see wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a real number greater than 1. The sparsity of the wavelet representation of the de-noised signal or image grows with ALPHA. Typically ALPHA $=2$.

THR minimizes the penalized criterion given by
let t * be the minimizer of
$\operatorname{crit}(\mathrm{t})=-\operatorname{sum}\left(\mathrm{c}(\mathrm{k})^{\wedge} 2, \mathrm{k} \leq \mathrm{t}\right)+2 *$ SIGMA^2*t*(ALPHA $\left.+\log (\mathrm{n} / \mathrm{t})\right)$
where $c(k)$ are the wavelet coefficients sorted in decreasing order of their absolute value and n is the number of coefficients; then $\mathrm{THR}=\left|\mathrm{c}\left(\mathrm{t}^{*}\right)\right|$.
wbmpen($\mathrm{C}, \mathrm{L}, \mathrm{SIGMA}$, ALPHA, ARG) computes the global threshold and, in addition, plots three curves:

- 2*SIGMA^2*t*(ALPHA + log(n/t))
- $\operatorname{sum}\left(c(k)^{\wedge} 2, k \neg \leq t\right)$
- crit(t)

Examples

```
% Example 1: Signal de-noising.
% Load noisy bumps signal.
load noisbump; x = noisbump;
% Perform a wavelet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
[c,l] = wavedec(x,lev,wname);
% Estimate the noise standard deviation from the
% detail coefficients at level 1, using wnoisest.
sigma = wnoisest(c,l,1);
% Use wbmpen for selecting global threshold
% for signal de-noising, using the tuning parameter.
alpha = 2;
thr = wbmpen(c,l,sigma,alpha)
thr =
```

 2.7681
 \% Use wdencmp for de-noising the signal using the above
\% threshold with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl', c,l,wname,lev,thr,'s',keepapp);
\% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x), title('Original signal')
subplot(212), plot(xd), title('De-noised signal')

Original signal

\% Example 2: Image de-noising.
\% Load original image.
load noiswom;
nbc $=$ size(map,1);
\% Perform a wavelet decomposition of the image
\% at level 3 using coif2.
wname = 'coif2'; lev = 3;
[c,s] = wavedec2(X,lev,wname);
\% Estimate the noise standard deviation from the
\% detail coefficients at level 1.
det1 = detcoef2('compact', c, s,1);
sigma $=$ median(abs(det1))/0.6745;
\% Use wbmpen for selecting global threshold
\% for image de-noising.
alpha = 1.2;
thr $=$ wbmpen(c, l, sigma, alpha)
thr $=$
36.0621

```
% Use wdencmp for de-noising the image using the above
% thresholds with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl',c,s,wname,lev,thr,'s',keepapp);
% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')
```


See Also

```
wden | wdencmp | wpbmpen | wpdencmp
```


Introduced before R2006a

wcodemat

Extended pseudocolor matrix scaling

Syntax

```
Y = wcodemat(X)
Y = wcodemat(X,NBCODES)
Y = wcodemat(X,NBCODES,OPT)
Y = wcodemat(X,NBCODES,OPT,ABSOL)
```


Description

wcodemat rescales an input matrix to a specified range for display. If the specified range is the full range of the current colormap, wcodemat is similar in behavior to imagesc.
$Y=$ wcodemat (X) rescales the matrix X to integers in the range [1,16].
$Y=$ wcodemat (X, NBCODES) rescales the input X as integers in the range [1,NBCODES] . The default value of NBCODES is 16 .
$Y=$ wcodemat ($\mathrm{X}, \mathrm{NBCODES}, \mathrm{OPT}$) rescales the matrix along the dimension specified by OPT. Valid character vectors for OPT are: 'column' (or 'c'), 'row' (or 'r'), and 'mat' (or 'm'). 'rows' scales X row-wise, ' column' scales X column-wise, and 'mat' scales X globally. The default value of OPT is 'mat'.
Y = wcodemat (X, NBCODES, OPT, ABSOL) rescales the input matrix X based on the absolute values of the entries in X if ABSOL is nonzero, or based on the signed values of X if $A B S O L$ is equal to zero. The default value of $A B S O L$ is 1 .

Examples

Scale level-one approximation coefficients globally to the full range of the colormap.

```
load woman;
% Get the range of the colormap
NBCOL = size(map,1);
```

```
% Obtain the 2D dwt using the Haar wavelet
[cA1,cH1,cV1,cD1] = dwt2(X,'db1');
% Display without scaling
image(cA1);
colormap(map);
title('Unscaled Image');
figure;
% Display with scaling
image(wcodemat(cA1,NBCOL));
colormap (map);
title('Scaled Image');
```

Introduced before R2006a

wcoher

(Not recommended) Wavelet coherence

Compatibility

wcoher in not recommended. Use wcoherence instead.

Syntax

```
WCOH = wcoher(Sig1,Sig2,Scales,wname)
WCOH = wcoher(...,Name,Value)
[WCOH,WCS] = wcoher(...)
[WCOH,WCS,CWT_S1,CWT_S2] = wcoher(...)
[...] = wcoh(...,'plot')
```


Description

WCOH = wcoher(Sig1,Sig2,Scales, wname) returns the wavelet coherence for the input signals Sig1 and Sig2 using the wavelet specified in wname at the scales in Scales. The input signals must be real-valued and equal in length.

WCOH = wcoher(..., Name, Value) returns the wavelet coherence with additional options specified by one or more Name, Value pair arguments.
[WCOH,WCS] = wcoher(...) returns the wavelet cross spectrum.
[WCOH,WCS, CWT_S1,CWT_S2] = wcoher(...) returns the continuous wavelet transforms of Sig1 and Sig2.
[...] = wcoh(...,'plot') displays the modulus and phase of the wavelet cross spectrum.

Input Arguments

Sig1

A real-valued one-dimensional input signal. Sig1 is a row or column vector.

Sig2

A real-valued one-dimensional input signal. Sig2 is a row or column vector.

Scales

Scales is a vector of real-valued, positive scales at which to compute the wavelet coherence.

wname

Wavelet used in the wavelet coherence. wname is any valid wavelet name.

Name-Value Pair Arguments
 'asc'

Scale factor for arrows in quiver plot. wcoher represents the phase using quiver. asc corresponds to the scale input argument in quiver.

Default: 1
'nas'
Number of arrows in scale. Together with the number of scales, nas determines the spacing between the y coordinates in the input to quiver. The y input to quiver is 1:length(Scales)/(nas-1):Scales(end)

Default: 20
'nsw'
Length of smoothing window in scale. nsw is a positive integer that specifies the length of a moving average filter in scale.

Default: 1

'ntw'

Length of smoothing window in time. ntw is a positive integer that specifies the length of a moving average filter in time.

Default: min [20,0.05*length(Sig1)]

'plot'

Type of plot. plot is one of the following character vectors:

- 'cwt'

Displays the continuous wavelet transforms of signals 1 and 2 .

- 'wcs'

Displays the wavelet cross spectrum.

- 'wcoh'

Displays the phase of the wavelet cross spectrum.

- 'all'

Displays all plots in separate figures.

Output Arguments

WCOH

Wavelet coherence.

WCS

Wavelet cross spectrum.

CWT_S1

Continuous wavelet transform of signal 1.

CWT_S2

Continuous wavelet transform of signal 2.

Examples

Wavelet coherence of sine waves in noise with delay:

```
t = linspace(0,1,2048);
x = sin(16*pi*t)+0.5*randn(1,2048);
y = sin(16*pi*t+pi/4)+0.5*randn(1, 2048);
wname = 'cgau3';
scales = 1:512;
ntw = 21; % smoothing parameter
% Display the modulus and phased of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'plot');
```

Sine wave and Doppler signal:

```
t = linspace(0,1,1024);
x = -sin(8*pi*t) + 0.4*randn(1,1024);
x = x/max(abs(x));
y = wnoise('doppler',10);
wname = 'cgau3';
scales = 1:512;
ntw = 21; % smoothing parameter
% Display of the CWT of the two signals.
wcoher(x,y,scales,wname,'ntw',ntw,'plot','cwt');
% Display of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'nsw',1,'plot','wcs');
% Display of the modulus and phased of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'plot');
```


More About

Wavelet Cross Spectrum

The wavelet cross spectrum of two time series, x and y is:

$$
C_{x y}(a, b)=S\left(C_{x}^{*}(a, b) C_{y}(a, b)\right)
$$

where $C_{x}(a, b)$ and $C_{y}(a, b)$ denote the continuous wavelet transforms of x and y at scales a and positions b. The superscript * is the complex conjugate and S is a smoothing operator in time and scale.

For real-valued time series, the wavelet cross spectrum is real-valued if you use a realvalued analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

Wavelet Coherence

The wavelet coherence of two time series x and y is:

$$
\frac{\left|S\left(C_{x}^{*}(a, b) C_{y}(a, b)\right)\right|^{2}}{S\left(| C _ { x } (a , b) | ^ { 2 } S \left(\left|C_{y}(a, b)\right|^{2}\right.\right.}
$$

where $C_{x}(a, b)$ and $C_{y}(a, b)$ denote the continuous wavelet transforms of x and y at scales a and positions b. The superscript * is the complex conjugate and S is a smoothing operator in time and scale.

For real-valued time series, the wavelet coherence is real-valued if you use a real-valued analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

- Wavelet Coherence

References

Grinsted, A, J.C. Moore, and S. Jevrejeva. "Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 11, 2004, pp. 561-566.

Torrence. C., and G. Compo. "A Practical Guide to Wavelet Analysis". Bulletin of the American Meteorological Society, 79, pp. 61-78.

See Also

wcoherence | cwt
Introduced in R2010b

wcoherence

Wavelet coherence and cross-spectrum

Syntax

```
wcoh = wcoherence(x,y)
[wcoh,wcs] = wcoherence(x,y)
[wcoh,wcs,period] = wcoherence(x,y,ts)
[wcoh,wcs,f] = wcoherence(x,y,fs)
[wcoh,wcs,f,coi] = wcoherence(___)
[wcoh,wcs,period,coi] = wcoherence(___,ts)
wcoherence(___)
```


Description

wcoh = wcoherence (x, y) returns the magnitude-squared wavelet coherence, which is a measure of the correlation between signals x and y in the time-frequency plane. Wavelet coherence is useful for analyzing nonstationary signals. The inputs x and y must be equal length, 1-D, real-valued signals. The coherence is computed using the analytic Morlet wavelet.
[wcoh,wcs] = wcoherence (x, y) returns the wavelet cross-spectrum of x and y . You can use the phase of the wavelet cross-spectrum values to identify the relative lag between the input signals.
[wcoh,wcs, period] = wcoherence(x,y,ts) uses a duration ts with a positive, scalar input, as the sampling interval. The duration can be in years, days, hours, minutes, or seconds. ts is used to compute the scale-to period conversion, period. The period in an array of durations with the same time unit as specified in ts
[wcoh,wcs,f] = wcoherence ($x, y, f s$) uses the positive sampling frequency, $f s$, to compute the scale-to-frequency conversion, f . The fs input is in Hz .
[wcoh,wcs,f,coi] = wcoherence(\qquad) returns the cone of influence, coi, for the wavelet coherence in cycles per sample. If you specify the sampling frequency, fs, the function returns both f and the cone of influence in Hz .
[wcoh,wcs, period, coi] = wcoherence(__ , ts) returns the cone of influence, coi, in cycles per unit time.
wcoherence (__) with no output arguments plots the wavelet coherence and cone of influence in the current figure. Due to the inverse relationship between frequency and period, a plot that uses the sampling interval is the inverse of a plot the uses the sampling frequency. For areas where the coherence exceeds 0.5 , plots that use the sampling frequency display arrows to show the phase lag of y with respect to x. The arrows are spaced in time and scale. The direction of the arrows corresponds to the phase lag on the unit circle. For example, a vertical arrow indicates a $n / 2$ or quarter-cycle phase lag. The corresponding lag in time depends on the duration of the cycle.

Examples

Wavelet Coherence of Two Sine Waves

Use default wcoherence settings to obtain the wavelet coherence between a sine wave with random noise and a frequency-modulated signal with decreasing frequency over time.

```
t = linspace(0,1,1024);
x = -sin(8*pi*t) + 0.4*randn(1,1024);
x = x/max(abs(x));
y = wnoise('doppler',10);
wcoh = wcoherence(x,y);
```

The default coherence computation uses the Morlet wavelet, 12 voices per octave and smooths 12 scales. The default number of octaves is equal to floor $(\log 2(\operatorname{numel}(x)))-1$, which in this case is 9 .

Effect of Sampling Interval on Wavelet Coherence

Obtain the wavelet coherence data for two signals, specifying a sampling interval of 0.001 seconds. Both signals consist of two sine waves (10 Hz and 50 Hz) in white noise. The sine waves have different time supports.

Set the random number generator to its default settings for reproducibility. Then, create the two signals and obtain the coherence.

```
rng default;
```

```
t = 0:0.001:2;
x = cos(2*pi*10*t).*(t>=0.5 & t<1.1)+ ...
cos(2*pi*50*t).*(t>= 0.2 & t< 1.4)+0.25*randn(size(t));
y = sin(2*pi*10*t).*(t>=0.6 & t<1.2)+...
sin(2*pi*50*t).*(t>= 0.4 & t<1.6)+ 0.35*randn(size(t));
[wcoh,~,period,coi] = wcoherence(x,y,seconds(0.001));
```

Use the pcolor command to plot the coherence and cone of influence.

```
period = seconds(period);
coi = seconds(coi);
h = pcolor(t,log2(period),wcoh);
h.EdgeColor = 'none';
ax = gca;
ytick=round(pow2(ax.YTick),3);
ax.YTickLabel=ytick;
ax.XLabel.String='Time';
ax.YLabel.String='Period';
ax.Title.String = 'Wavelet Coherence';
hcol = colorbar;
hcol.Label.String = 'Magnitude-Squared Coherence';
hold on;
plot(ax,t,log2(coi),'w--','linewidth',2);
```


Use wcoherence (x, y, seconds (0.001)) without any outputs arguments. This plot includes the phase arrows and the cone of influence.
wcoherence(x,y, seconds(0.001));

Effect of Sampling Frequency on Wavelet Coherence

Obtain the wavelet coherence for two signals, specifying a sampling frequency of 1000 Hz . Both signals consist of two sine waves (10 Hz and 50 Hz) in white noise. The sine waves have different time supports.

Set the random number generator to its default settings for reproducibility. Then, create the two signals and obtain the coherence.

```
rng default;
t = 0:0.001:2;
x = cos(2*pi*10*t).*(t>=0.5 & t<1.1)+...
cos(2*pi*50*t).*(t>= 0.2 & t< 1.4)+0.25*randn(size(t));
y = sin(2*pi*10*t).*(t>=0.6 & t<1.2)+...
```

```
sin(2*pi*50*t).*(t>= 0.4 & t<1.6)+ 0.35*randn(size(t));
wcoherence(x,y,1000);
```


This coherence plot is flipped with respect to the coherence plot in the previous example, which specifies a sampling interval instead of a sampling frequency.

Obtain the scale-to-freqeuncy conversion output in f.
[wcoh,wcs,f] = wcoherence(x,y,1000);

Effect of Number of Smoothed Scales on Wavelet Coherence

Obtain the wavelet coherence for two signals. Both signals consist of two sine waves (10 Hz and 50 Hz) in white noise. Use the default number of scales to smooth. This value is equivalent to the number of voices per octave. Both values default to 12 .

Set the random number generator to its default settings for reproducibility. Then, create the two signals and obtain the coherence.

```
rng default;
t = 0:0.001:2;
x = cos(2*pi*10*t).*(t>=0.5 & t<1.1)+ ...
cos(2*pi*50*t).*(t>= 0.2 & t< 1.4)+0.25*randn(size(t));
y = sin(2*pi*10*t).*(t>=0.6 & t<1.2)+...
sin(2*pi*50*t).*(t>= 0.4 & t<1.6)+ 0.35*randn(size(t));
wcoherence(x,y);
```


Set the number of scales to smooth to 16 . The increased smoothing causes reduced low frequency resolution.

```
wcoherence(x,y,'NumScalesToSmooth',16);
```


Effect of Phase Display Threshold on Wavelet Coherence of Weather Data

Compare the effects of using different phase display thresholds on the wavelet coherence.
Plot the wavelet coherence between the El Nino time series and the All India Average Rainfall Index. The data are sampled monthly. Specify the sampling interval as $1 / 12$ of a year to display the periods in years. Use the default phase display threshold of 0.5 , which shows phase arrows only where the coherence is greater than or equal to 0.5 .
load ninoairdata;
wcoherence(nino, air, years(1/12));

Set the phase display threshold to 0.7 . The number of phase arrows decreases.
wcoherence(nino, air, years(1/12), 'PhaseDisplayThreshold', 0.7);

Input Arguments

x - Input signal

vector of real values
Input signal, specified as a vector of real values. x must be a 1-D, real-valued signal. The two input signals, x and y, must be the same length and must have at least four samples.

y - Input signal

vector of real values

Input signal, specified as vector of real values. y must be a 1-D, real-valued signal. The two input signals, x and y, must be the same length and must have at least four samples.

ts - Sampling interval

duration with positive scalar input
Sampling interval, also known as the sampling period, specified as a duration with positive scalar input. Valid durations are years, days, hours, seconds, and minutes. You can also use the duration function to specify ts. You cannot use calendar durations (caldays, calweeks, calmonths, calquarters, or calyears). You cannot specify both ts and fs .

fs - Sampling frequency

positive scalar
Sampling frequency, specified as a positive scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: 'PhaseDisplayThreshold', 0.7; specifies the threshold for displaying phase vectors.

' VoicesPerOctave' - Number of voices per octave 12 (default) | integer from 10 to 32

Number of voices per octave to use in the wavelet coherence, specified as an integer from 10 to 32 .

' NumScalesToSmooth ' - Number of scales to smooth number of voices per octave (default) | positive integer

Number of scales to smooth in time and scale, specified as a positive integer. This value must be less than one half the total number of scales. The function uses a moving average filter to smooth across scale. If you do not specify the number of scales to smooth, the value of NumScalesToSmooth defaults to the number of voices per octave. If your coherence is noisy, you can specify a larger NumScalesToSmooth value to smooth the coherence more.

' NumOctaves' - Number of octaves
 positive integer

Number of octaves to use in the wavelet coherence, specified as a positive integer between 1 and floor $(\log 2(\operatorname{numel}(x)))-1$. If you do not need to examine lower frequency values, use a smaller NumOctaves value.

'PhaseDisplayThreshold ' - Threshold for displaying phase vectors

0.5 (default) | real scalar between 0 and 1

Threshold for displaying phase vectors, specified as a real scalar between 0 and 1. This function displays phase vectors for regions with coherence greater than or equal to the specified threshold value. Lowering the threshold value displays more phase vectors. If you use wcoherence with any output arguments, the PhaseDisplayThreshold value is ignored.

Output Arguments

wcoh - Wavelet coherence

matrix
Wavelet coherence, returned as a matrix. The coherence is computed using the analytic Morlet wavelet over logarithmic scales, with a default value of 12 voices per octave. The default number of octaves is equal to floor $(\log 2(\operatorname{numel}(x)))-1$. If you do not specify a sampling interval, sampling frequency is assumed.

wcs - Wavelet cross spectrum

matrix of complex values
Wavelet cross-spectrum, returned as a matrix of complex values. You can use the phase of the wavelet cross-spectrum values to identify the relative lag between the input signals.

Data Types: double
Complex Number Support: Yes

period - Scale-to-period conversion

array of durations
Scale-to-period conversion, returned as an array of durations. The conversion values are computed from the sampling period specified in ts. Each period element has the same format as ts .

f - Scale-to-frequency conversion
 vector

Scale-to-frequency conversion, returned as a vector. The vector contains the peak frequency values for the wavelets used to compute the coherence. If you want to output f, but do not specify a sampling frequency input, fs , the returned wavelet coherence is in cycles per sample.

coi - Cone of influence

array of doubles or array of durations
Cone of influence for the wavelet coherence, returned as either an array of doubles or array of durations. The cone of influence indicates where edge effects occur in the coherence data. If you specify a sampling frequency, fs , the cone of influence is in Hz . If you specify a sampling interval or period, ts, the cone of influence is in periods. Due to the edge effects, give less credence to areas of apparent high coherence that are outside or overlap the cone of influence. The cone of influence is indicated by a dashed line.

More About

Wavelet Cross Spectrum

The wavelet cross- spectrum is a measure of the distribution of power of two signals.
The wavelet cross spectrum of two time series, x and y, is:

$$
C_{x y}(a, b)=S\left(C_{x}^{*}(a, b) C_{y}(a, b)\right)
$$

$C_{x}(a, b)$ and $C_{y}(a, b)$ denote the continuous wavelet transforms of x and y at scales a and positions b. The superscript * is the complex conjugate, and S is a smoothing operator in time and scale.

For real-valued time series, the wavelet cross-spectrum is real-valued if you use a realvalued analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

Wavelet Coherence

Wavelet coherence is a measure of the correlation between two signals.

The wavelet coherence of two time series x and y is:

$$
\frac{\left|S\left(C_{x}^{*}(a, b) C_{y}(a, b)\right)\right|^{2}}{S\left(| C _ { x } (a , b) | ^ { 2 } S \left(\left|C_{y}(a, b)\right|^{2}\right.\right.}
$$

$C_{x}(a, b)$ and $C_{y}(a, b)$ denote the continuous wavelet transforms of x and y at scales a and positions b. The superscript * is the complex conjugate and S is a smoothing operator in time and scale.

For real-valued time series, the wavelet coherence is real-valued if you use a real-valued analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

References

[1] Grinsted, A, J., C. Moore, and S. Jevrejeva. "Application of the cross wavelet transform and wavelet coherence to geophysical time series." Nonlinear Processes in Geophysics. Vol. 11, Issue 5/6, 2004, pp. 561-566.
[2] Maraun, D., J. Kurths, and M. Holschneider. "Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation and significance testing." Physical Review E 75. 2007, pp. 016707-1-016707-14.
[3] Torrence, C., and P. Webster. "Interdecadal changes in the ESNO-Monsoon System." Journal of Climate. Vol. 12, 1999, pp. 2679-2690.

See Also

cwt | days | duration | hours | minutes | seconds | years

Introduced in R2016a

wcompress

True compression of images using wavelets

Syntax

```
wcompress('c',X,SAV_FILENAME,COMP_METHOD)
wcompress(...,'ParName1',ParVal1,'ParName2',ParVal2,...)
[COMPRAT,BPP] = wcompress('c',...)
XC = wcompress('u',SAV_FILENAME)
XC = wcompress('u',SAV_FILENAME,'plot')
XC = wcompress('u',SAV_FILENAME,'step')
```


Description

The wcompress command performs either compression or uncompression of grayscale or truecolor images.

More theoretical information on true compression is in "Wavelet Compression for Images" of the Wavelet Toolbox User's Guide.

Compression

wcompress('c', X, SAV_FILENAME, COMP_METHOD) compresses the image X using the compression method COMP_METHOD.

The compressed image is saved in the file SAV_FILENAME. You must have write permission in the current working directory or MATLAB will change directory to tempdir and write the .wtc file in that directory. X can be either a 2-D array containing an indexed image or a 3-D array of uint8 containing a truecolor image. Both the row and column size of the image must be powers of two.
wcompress (' c ' , FILENAME , . .) loads the image X from the file FILENAME which is a MATLAB Supported Format (MSF) file: MAT-file or other image files (see imread).
wcompress ('c', I, ...) converts the indexed image $X=I\{1\}$ to a truecolor image Y using the colormap map $=\mathrm{I}\{2\}$ and then compresses Y .

Note: Data written to . wtc files uses uint64 precision. In releases previous to R2016b, data was written using uint32. If your code is affected adversely by this change, use the legacy option to compress and uncompress your data using the previous behavior.

```
wcompress('c',X,SAV_FILENAME,COMP_METHOD,'legacy')
```

The valid compression methods are divided in three categories.
1 Progressive Coefficients Significance Methods (PCSM):

MATLAB Name	Compression Method Name
' ezw '	Embedded Zerotree Wavelet
'spiht'	Set Partitioning In Hierarchical Trees
'stw'	Spatial-orientation Tree Wavelet
'wdr'	Wavelet Difference Reduction
'aswdr'	Adaptively Scanned Wavelet Difference Reduction
'spiht_3d'	Set Partitioning In Hierarchical Trees 3D for truecolor images

For more details on these methods, see the references and especially Walker and also Said and Pearlman.

1 Coefficients Thresholding Methods (CTM-1):

MATLAB Name	Compression Method Name
'lvl_mmc '	Subband thresholding of coefficients and Huffman encoding

For more details on this method, see the Strang and Nguyen reference.
1 Coefficients Thresholding Methods (CTM-2):

MATLAB Name	Compression Method Name
'gbl_mmc_f '	Global thresholding of coefficients and fixed encoding
'gbl_mmc_h '	Global thresholding of coefficients and Huffman encoding

Note The Discrete Wavelet Transform uses the periodized extension mode.
All the compression methods use parameters which have default values. You can change these values using the following syntax:

```
wcompress(...,'ParName1',ParVal1,'ParName2',ParVal2,...)
```

Some of the parameters are related to display or to data transform functionalities. The others are linked to the compression process itself.

Data transform parameters

- 'ParName' = 'wname' or 'WNAME' sets the wavelet name.

ParVal is a character vector (see waveletfamilies). The default for is bior4.4

- 'ParName' = 'level' or 'LEVEL' sets the level of decomposition.

ParVal is an integer such that: $1 \leq$ level \leq levmax which is the maximum possible level (see wmaxlev).

The default level depends on the method:

- for PCSM methods level is equal to levmax.
- for CTM methods level is equal to fix(levmax/2)
- ParName' = 'it' or 'IT' sets Image type Transform.

ParVal must be one of the following character vectors:
' n ' : no transformation (default), image type (truecolor or grayscale) is automatically detected.
' g ' : grayscale transformation type.
' c ' : color transformation type (RGB uint8).

- 'ParName' = 'cc' or 'CC' sets Color Conversion parameter if X is a truecolor image.

ParVal must be one of the following character vectors:
'rgb' or 'none ' : No conversion (default).
' yuv ' : YUV color space transform.
' klt ' : Karhunen-Loeve transform.
'yiq': YIQ color space transform.
'xyz ' : CIEXYZ color space transform.

Parameter for Progressive Coefficients Significance Methods (PCSM)

- 'ParName' = 'maxloop' or 'MAXLOOP' sets the maximum number of steps for the compression algorithm.

ParVal must be a positive integer or Inf (default is 10).

Parameters for Coefficients Thresholding Methods (CTM-1)

Either of the following parameters may be used:

- 'ParName' = 'bpp' or 'BPP' sets the bit-per-pixel ratio.

ParVal must be such that $0 \leq$ ParVal ≤ 8 (grayscale) or 24 (truecolor).

- 'ParName ' = 'comprat' or 'COMPRAT' sets the compression ratio.

ParVal must be such that $0 \leq$ ParVal ≤ 100.

Parameters for Coefficients Thresholding Methods (CTM-2)

Two parameters may be used. The first is related to the threshold and the second is the number of classes for quantization.

The first one may be chosen among the five following parameters:

- 'ParName ' = 'threshold' or 'THRESHOLD' sets the threshold value for compression.

ParVal must be a positive (or zero) real number.

- 'ParName' = 'nbcfs' or 'NBCFS' sets the number of preserved coefficients in the wavelet decomposition.

ParVal must be an integer such that: $0 \leq$ ParVal \leq total number of coefficients of wavelet decomposition.

- 'ParName' = 'percfs' or 'PERCFS' sets the percentage of preserved coefficients in the wavelet decomposition.

ParVal must be a real number such that: $0 \leq$ ParVal ≤ 100.

- 'ParName' = 'bpp' or 'BPP' sets the bit-per-pixel ratio.

ParVal must be such that: $0 \leq$ ParVal ≤ 8 (grayscale) or 24 (truecolor)

- 'ParName' = 'comprat' or 'COMPRAT' sets the compression ratio.

ParVal must be such that: $0 \leq$ ParVal ≤ 100.
The second parameter sets the number of classes for quantization:

- 'ParName' = 'nbclas' or 'NBCLAS' sets the number of classes.

ParVal must be a real number such that: $2 \leq$ ParVal ≤ 200.

Display parameter

- 'ParName' = 'plotpar' or 'PLOTPAR' sets the plot parameter.

ParVal must be one of the following character vectors or numbers:
'plot ' or 0: plots only the compressed image.
'step ' or 1: displays each step of the encoding process (only for PCSM methods).
[COMPRAT,BPP] = wcompress('c',...) returns the compression ratio COMPRAT and the bit_per_pixel ratio BPP.

Uncompression

XC = wcompress('u',SAV_FILENAME) uncompresses the file SAV_FILENAME, which contains the compressed image, and returns the image XC. Depending on the initial
compressed image, XC can be a 2 -D array containing either an indexed image or a 3-D array of uint 8 containing a truecolor image.

XC = wcompress('u',SAV_FILENAME,'plot') plots the uncompressed image.
XC = wcompress('u',SAV_FILENAME,'step') shows the step-by-step uncompression, only for PCSM methods.

Examples

Image Compression Using Basic Parameters

This example shows how to compress and uncompress the jpeg image arms.jpg.
Use the spatial orientation tree wavelet ('stw ') compression method and save the compressed image to a file.

```
wcompress('c','arms.jpg','comp_arms.wtc','stw');
```

Load the stored image and display the step-by-step uncompression to produce the uncompressed image.

```
wcompress('u','comp_arms.wtc','step');
```

Compressed Image

Image Compression and Uncompression Using Advanced Parameters.

This example show how to compress a jpeg image using the adaptively scanned wavelet difference reduction compression method ('aswdr'). The conversion color (' cc ') uses the Karhunen-Loeve transform ('kit'). The maximum number of loops ('maxloop') is set to 11 and the plot type ('plotpar') is set to step through the compression. Show the compression ratio (cratio) and the bit-per-pixel ratio (bpp), which indicate the quality of the compression.

```
[cratio,bpp] = wcompress('c','woodstatue.jpg','woodstatue.wtc', ...
    'aswdr','cc','klt','maxloop',11,'plotpar','step');
cratio
bpp
```

```
    cratio =
        3.0792
    bpp =
        0.7390
```

Compressed Image

Load the compressed image and step through the uncompression process.
wcompress('u', 'woodstatue.wtc', 'step');

Compressed Image

Compression and Uncompression of a Grayscale Image

This example shows how to compress a grayscale image using the set partitioning in hierarchical trees ('spiht') compression method. It also computes the mean square error (MSE) and the peak signal to noise ratio (PSNR) error values. You use these two measures to quantify the error between two images. The PSNR is expressed in decibels.

Load the image and store it in a file.

```
load mask;
[cr,bpp] = wcompress('c',X,'mask.wtc','spiht','maxloop',12)
cr =
```

```
    2.8610
bpp =
    0.2289
```

Load the stored image from the file, uncompress it, and delete the file.

```
Xc = wcompress('u','mask.wtc');
delete('mask.wtc')
```

Display the original and compressed images.

```
colormap(pink(255))
subplot(1,2,1); image(X); title('Original image')
axis square
subplot(1,2,2); image(Xc); title('Compressed image')
axis square
```


Compute the MSE and PSNR.
$\mathrm{D}=\mathrm{abs}(\mathrm{X}-\mathrm{Xc}) \mathrm{A}^{\wedge} 2$;
mse $=\operatorname{sum}(\mathrm{D}(:)) /$ numel (X)
psnr $=10 * \log 10(255 * 255 / \mathrm{mse})$

```
mse =
    33.6564
psnr =
```


Compression and Uncompression of a Truecolor Image

is example shows how to compress a trucolor image using the set partitioning in hierarchical trees - 3D ('spiht_3D') compression method.

Load, compress, and store the image in a file. Plot the original and compressed images. Display the compression ratio ('cratio') and the bits-per-pixel ('bpp '), which indicate the quality of the compression.

```
load mask;
X = imread('wpeppers.jpg');
[cratio,bpp] = wcompress('c',X,'wpeppers.wtc','spiht','maxloop',12)
Xc = wcompress('u','wpeppers.wtc');
delete('wpeppers.wtc')
cratio =
    1.6549
bpp =
    0.3972
```

Display the original and compressed images.

```
subplot(1,2,1); image(X); title('Original image'), axis square
subplot(1,2,2); image(Xc); title('Compressed image'), axis square
```


Compute the mean square error (MSE) and the peak signal-to-noise ratio (PSNR) error values. You use these two measures to quantify the error between two images. The PSNR is expressed in decibels.
$\mathrm{D}=$ abs(double(X)-double(Xc)).^2;
mse $=\operatorname{sum}(\mathrm{D}(:)) /$ numel(X)
psnr $=10 * \log 10(255 * 255 / \mathrm{mse})$
mse =
26.7808

References

Christophe, E., C. Mailhes, P. Duhamel (2006), "Adaptation of zerotrees using signed binary digit representations for 3 dimensional image coding," EURASIP Journal on Image and Video Processing, 2007, to appear in the special issue on Wavelets in Source Coding, Communications, and Networks, Paper ID 54679.

Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2007), Wavelets and their applications, ISTE DSP Series.

Said A., W.A. Pearlman (1996), "A new, fast, and efficient image codec based on set partitioning in hierarchical trees," IEEE Trans. on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp. 243-250.

Shapiro J.M. (1993), "Embedded image coding using zerotrees of wavelet coefficients",P IEEE Trans. Signal Proc., Vol. 41, No. 12, pp. 3445-3462.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.
Walker J.S. (1999), "Wavelet-Based Image Compression," University of Wisconsin, Eau Claire, Wisconsin, USA, , Sub-chapter of CRC Press book: Transform and Data Compression. A Primer on Wavelets and Their Scientific Applications.

See Also
imread | imwrite | wmaxlev | tempdir | path
Introduced in R2008b

wdcbm

Thresholds for wavelet 1-D using Birgé-Massart strategy

Syntax

```
[THR,NKEEP] = wdcbm(C,L,ALPHA,M)
wdcbm(C,L,ALPHA)
wdcbm(C,L,ALPHA,L(1))
```


Description

[THR,NKEEP] = wdcbm(C,L,ALPHA,M) returns level-dependent thresholds THR and numbers of coefficients to be kept NKEEP, for de-noising or compression. THR is obtained using a wavelet coefficients selection rule based on the Birgé-Massart strategy.
[C, L] is the wavelet decomposition structure of the signal to be de-noised or compressed, at level $j=$ length (L) - 2 . ALPHA and M must be real numbers greater than 1 .

THR is a vector of length j; THR (i) contains the threshold for level i.
NKEEP is a vector of length j; NKEEP (i) contains the number of coefficients to be kept at level i.
j, M and ALPHA define the strategy:

- At level $\mathrm{j}+1$ (and coarser levels), everything is kept.
- For level i from 1 to j, the n_{i} largest coefficients are kept with $n_{i}=M /(j+2-i)^{\text {ALPHA }}$.

Typically ALPHA $=1.5$ for compression and ALPHA $=3$ for de-noising.
A default value for M is $M=L(1)$, the number of the coarsest approximation coefficients, since the previous formula leads for $i=j+1$, to $n_{j+1}=M=L(1)$. Recommended values for M are from $L(1)$ to $2^{*} L(1)$.
wdcbm ($C, L, A L P H A)$ is equivalent to wdcbm ($C, L, A L P H A, L(1))$.

Examples

```
% Load electrical signal and select a part of it.
load leleccum; indx = 2600:3100;
x = leleccum(indx);
% Perform a wavelet decomposition of the signal
% at level 5 using db3.
wname = 'db3'; lev = 5;
[c,l] = wavedec(x,lev,wname);
% Use wdcbm for selecting level dependent thresholds
% for signal compression using the adviced parameters.
alpha = 1.5; m = l(1);
[thr,nkeep] = wdcbm(c,l,alpha,m)
thr =
    19.5569 17.1415 20.2599 42.8959 15.0049
nkeep =
    1
```

\% Use wdencmp for compressing the signal using the above
\% thresholds with hard thresholding.
[xd,cxd,lxd, perfo,perfl2] = ...
wdencmp('lvd', c, l, wname, lev,thr,'h');
\% Plot original and compressed signals.
subplot(211), plot(indx,x), title('Original signal');
subplot(212), plot(indx,xd), title('Compressed signal');
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' \% -- zero cfs: ',num2str(perf0), ' \%'];
xlabel([xlab1 xlab2]);

References

Birgé, L.; P. Massart (1997), "From model selection to adaptive estimation," in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55-88.

See Also

wden | wdencmp | wpdencmp

Introduced before R2006a

wdcbm 2

Thresholds for wavelet 2-D using Birgé-Massart strategy

Syntax

```
[THR,NKEEP] = wdcbm2(C,S,ALPHA,M)
wdcbm2(C,S,ALPHA)
wdcbm2(C,S,ALPHA,prod(S(1,:)))
```


Description

[THR,NKEEP] = wdcbm2(C,S,ALPHA,M) returns level-dependent thresholds THR and numbers of coefficients to be kept NKEEP, for de-noising or compression. THR is obtained using a wavelet coefficients selection rule based on the Birgé-Massart strategy.
[C, S] is the wavelet decomposition structure of the image to be de-noised or compressed, at level j $=\operatorname{size}(S, 1)-2$.

ALPHA and M must be real numbers greater than 1 .
THR is a matrix 3 by j; THR (: ,i) contains the level dependent thresholds in the three orientations: horizontal, diagonal, and vertical, for level i.

NKEEP is a vector of length j; NKEEP (i) contains the number of coefficients to be kept at level i.
j, M and ALPHA define the strategy:

- At level $\mathrm{j}+1$ (and coarser levels), everything is kept.
- For level i from 1 to j, the n_{i} largest coefficients are kept with $n_{i}=M \quad(j+2-i)^{\text {ALPHA }}$.

Typically ALPHA $=1.5$ for compression and ALPHA $=3$ for de-noising.
A default value for M is $M=\operatorname{prod}(S(1,:))$, the length of the coarsest approximation coefficients, since the previous formula leads for $i=j+1$, to $n_{j+1}=M=\operatorname{prod}(S(1,:))$.

Recommended values for M are from $\operatorname{prod}(S(1,:))$ to $6 * \operatorname{prod}(S(1,:))$.
wdcbm2 ($\mathrm{C}, \mathrm{S}, \mathrm{ALPHA}$) is equivalent to $\operatorname{wdcbm2(C,S,ALPHA,\operatorname {prod}(S(1,:))).}$

Examples

```
% Load original image.
load detfingr;
nbc = size(map,1);
% Perform a wavelet decomposition of the image
% at level 3 using sym4.
wname = 'sym4'; lev = 3;
[c,s] = wavedec2(X,lev,wname);
% Use wdcbm2 for selecting level dependent thresholds
% for image compression using the adviced parameters.
alpha = 1.5; m = 2.7*prod(s(1,:));
[thr,nkeep] = wdcbm2(c,s,alpha,m)
thr =
    21.4814 46.8354 40.7907
    21.4814 46.8354 40.7907
    21.4814 46.8354 40.7907
nkeep =
            6 2 4
        961
        1 7 6 5
```

```
% Use wdencmp for compressing the image using the above
% thresholds with hard thresholding.
[xd,cxd,sxd,perf0,perfl2] = ...
    wdencmp('lvd',c,s,wname,lev,thr,'h');
```

\% Plot original and compressed images.
colormap(pink(nbc));
subplot(221), image(wcodemat(X, nbc)),
title('Original image')
subplot(222), image(wcodemat(xd,nbc)),
title('Compressed image')
xlab1 = ['2-norm rec.: ', num2str(perfl2)];
xlab2 = [' \% -- zero cfs: ',num2str(perf0), ' \%'];
xlabel([xlab1 xlab2]);

References

Birgé, L.; P. Massart (1997). "From model selection to adaptive estimation," in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55-88.

See Also
wdencmp | wpdencmp
Introduced before R2006a

wdecenergy

Multisignal 1-D decomposition energy distribution

Syntax

[E,PEC,PECFS] = wdecenergy (DEC)
[E,PEC,PECFS, IDXSORT,LONGS] = wdecenergy (DEC, 'sort')
[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,OPTSORT,IDXSIG)

Description

[E, PEC, PECFS] = wdecenergy (DEC) computes the vector E that contains the energy (L2-Norm) of each decomposed signal, the matrix PEC that contains the percentage of energy for each wavelet component (approximation and details) of each signal, and the matrix PECFS that contains the percentage of energy for each coefficient.

- $\mathrm{E}(\mathrm{i})$ is the energy (L 2 -norm) of the ith signal.
- PEC(i,1) is the percentage of energy for the approximation of level MAXLEV = DEC.level of the ith signal.
- PEC(i, j), $\mathrm{j}=2, \ldots, \mathrm{MAXLEV}+1$ is the percentage of energy for the detail of level (MAXLEV+1-j) of the ith signal.
- PECFS(i,j), is the percentage of energy for jth coefficients of the ith signal.
[E, PEC, PECFS, IDXSORT, LONGS] = wdecenergy (DEC, 'sort') returns PECFS sorted (by row) in ascending order and an index vector IDXSORT.
- Replacing 'sort' by 'ascend' returns the same result.
- Replacing 'sort' by 'descend' returns PECFS sorted in descending order.

LONGS is a vector containing the lengths of each family of coefficients.
[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG) returns the values for the signals whose indices are given by the IDXSIG vector.
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy (DEC,OPTSORT,IDXSIG) returns the values for the signals whose indices are given by the IDXSIG vector, the index
vector IDXSORT, and LONGS, which is a vector containing the lengths of each family of coefficients. Valid values for OPTSORT are 'none', 'sort', 'ascend', 'descend'.

Examples

\% Load original 1D-multisignal.
load thinker
\% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r', X,2,'db2');
\% Compute the energy distribution.
[E,PEC,PECFS] = wdecenergy (dec);
\% Display the total energy and the distribution of energy
\% for each wavelet component (A2, D2, D1).
E31 = E(31)
perA2D2D1 = PEC(31,:)
\% Compare the coefficient energy distribution
\% for signal 1 and signal 31.
PECFS_1 $=\operatorname{PECFS}(1,:)$;
PECFS_31 = PECFS(31,:);
figure;
plot(PECFS_1,'--r','linewidth',2); hold on
plot(PECFS_31,'b','linewidth',2);
grid; set(gca,'Xlim',[1,size(PECFS,2)])
title('PECFS1 dashed line and PECFS31 solid line')

See Also
mdwtdec | mdwtrec
Introduced in R2012a

wden

Automatic 1-D de-noising

Syntax

```
XD = wden(X,TPTR,SORH,SCAL,N,'wname')
XD = wden(C,L,TPTR,SORH,SCAL,N,'wname')
XD = wden(W,'modwtsqtwolog',SORH,'mln',N,WNAME)
[XD,CXD] = wden(...)
[XD,CXD,LXD] = wden(...)
```


Description

wden is a one-dimensional de-noising function.
wden performs an automatic de-noising process of a one-dimensional signal using wavelets.

XD = wden (X,TPTR, SORH,SCAL, N, 'wname ') returns a de-noised version XD of input signal X obtained by thresholding the wavelet coefficients.

TPTR character vector contains the threshold selection rule:

- 'rigrsure ' uses the principle of Stein's Unbiased Risk.
- 'heursure ' is an heuristic variant of the first option.
- 'sqtwolog' for the universal threshold $\sqrt{2 \ln (\bullet)}$
- 'minimaxi' for minimax thresholding (see thselect for more information)

SORH ('s'or 'h') is for soft or hard thresholding (see wthresh for more information).
SCAL defines multiplicative threshold rescaling:
'one ' for no rescaling
'sln' for rescaling using a single estimation of level noise based on first-level coefficients
'mln' for rescaling done using level-dependent estimation of level noise

Wavelet decomposition is performed at level N and ' wname ' is a character vector containing the name of the desired orthogonal wavelet (see wmaxlev and wfilters for more information).

XD = wden(C,L,TPTR,SORH,SCAL,N,'wname') returns the same output arguments, using the same options as above, but obtained directly from the input wavelet decomposition structure [C,L] of the signal to be de-noised, at level N and using 'wname' orthogonal wavelet.

XD = wden(W, 'modwtsqtwolog', SORH, 'mln', N, WNAME) returns the denoised signal obtained by operating on the MODWT transform matrix W , where W is the output of MODWT. You must use the same wavelet in both modwt and wden.
[XD, CXD] = wden (...) returns the denoised wavelet coefficients. For DWT denoising, CXD is a vector (see wavedec). For MODWT denoising, CXD is a matrix with N+1 rows (see modwt). The number of columns is equal to the length of the input signal X.
$[X D, C X D, L X D]=$ wden (...) returns the number of coefficients by level for DWT denoising. See wavedec for details. The LXD output is not supported for MODWT denoising. The additional output arguments [CXD, LXD] are the wavelet decomposition structure (see wavedec for more information) of the de-noised signal XD.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Set signal to noise ratio and set rand seed.
snr $=3$; init $=2055615866$;
\% Generate original signal and a noisy version adding
\% a standard Gaussian white noise.
[xref, x] = wnoise(3,11,snr,init);

```
% De-noise noisy signal using soft heuristic SURE thresholding
% and scaled noise option, on detail coefficients obtained
% from the decomposition of x, at level 5 by sym8 wavelet.
lev = 5;
xd = wden(x,'heursure','s','one',lev,'sym8');
% Plot signals.
subplot(611), plot(xref), axis([1 2048 -10 10]);
title('Original signal');
```

```
subplot(612), plot(x), axis([[1 2048 -10 10]);
title(['Noisy signal - Signal to noise ratio = ',...
num2str(fix(snr))]);
subplot(613), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - heuristic SURE');
% De-noise noisy signal using soft SURE thresholding
xd = wden(x,'heursure','s','one',lev,'sym8');
% Plot signal.
subplot(614), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - SURE');
% De-noise noisy signal using fixed form threshold with
% a single level estimation of noise standard deviation.
xd = wden(x,'sqtwolog','s','sln',lev,'sym8');
% Plot signal.
subplot(615), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Fixed form threshold');
% De-noise noisy signal using minimax threshold with
% a multiple level estimation of noise standard deviation.
xd = wden(x,'minimaxi','s','sln',lev,'sym8');
% Plot signal.
subplot(616), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Minimax');
% If many trials are necessary, it is better to perform
% decomposition once and threshold it many times:
% decomposition.
[c,l] = wavedec(x,lev,'sym8');
% threshold the decomposition structure [c,l].
xd = wden(c,l,'minimaxi','s','sln',lev,'sym8');
% Editing some graphical properties,
% the following figure is generated.
```


Denoise a signal consisting of a $2-\mathrm{Hz}$ sine wave with transients at 0.3 and 0.72 seconds. Use Donoho and Johnstone's universal threshold with level-dependent estimation of the noise. Obtain denoised versions using the DWT and MODWT. Compare the results.

```
N = 1000;
t = linspace(0,1,N);
x = 4*sin(4*pi*t);
x = x - sign(t-.3)-sign(.72 - t);
y = x+0.15*randn(size(t));
xdDWT = wden(y,'sqtwolog','s','mln',3,'db2');
xdMODWT = wden(y,'modwtsqtwolog','s','mln',3,'db2');
subplot(2,1,1)
plot(xdDWT), title('DWT Denoising');
axis tight;
subplot(2,1,2)
plot(xdMODWT), title('MODWT Denoising');
axis tight;
```


Denoise a blocky signal using the Haar wavelet with MODWT and DWT denoising.
Compare the L2 and L-infty norms of the difference between the original signal and the denoised versions.

```
[x,xn] = wnoise('blocks',10,3);
xdMODWT = wden(xn,'modwtsqtwolog','s','mln',6,'haar');
xd = wden(xn,'sqtwolog','s','mln',6,'haar');
plot(x)
hold on
plot(xd,'r--')
plot(xdMODWT,'k-.')
legend('Original','DWT','MODWT')
hold off
norm(abs(x-xd),2),
norm(abs(x-xd),Inf)
```

```
norm(abs(x-xdMODWT), 2),
norm(abs(x-xdMODWT), Inf)
```


More About

Algorithms

The underlying model for the noisy signal is basically of the following form:

$$
s(n)=f(n)+\sigma e(n)
$$

where time n is equally spaced.

In the simplest model, suppose that $e(n)$ is a Gaussian white noise $N(0,1)$ and the noise level σ a is supposed to be equal to 1 .

The de-noising objective is to suppress the noise part of the signal s and to recover f.
The de-noising procedure proceeds in three steps:
1 Decomposition. Choose a wavelet, and choose a level N. Compute the wavelet decomposition of the signal s at level N.
2 Detail coefficients thresholding. For each level from 1 to N, select a threshold and apply soft thresholding to the detail coefficients.
3 Reconstruction. Compute wavelet reconstruction based on the original approximation coefficients of level N and the modified detail coefficients of levels from 1 to N .

More details about threshold selection rules are in "Wavelet Denoising and Nonparametric Function Estimation", in the User's Guide, and in the help of the thselect function. Let us point out that

- The detail coefficients vector is the superposition of the coefficients of f and the coefficients of e, and that the decomposition of e leads to detail coefficients that are standard Gaussian white noises.
- Minimax and SURE threshold selection rules are more conservative and are more convenient when small details of function f lie in the noise range. The two other rules remove the noise more efficiently. The option 'heursure' is a compromise.

In practice, the basic model cannot be used directly. This section examines the options available, to deal with model deviations. The remaining parameter scal has to be specified. It corresponds to threshold rescaling methods.

- Option scal = 'one ' corresponds to the basic model.
- In general, you can ignore the noise level that must be estimated. The detail coefficients $C D_{1}$ (the finest scale) are essentially noise coefficients with standard deviation equal to σ. The median absolute deviation of the coefficients is a robust estimate of σ. The use of a robust estimate is crucial because if level 1 coefficients contain f details, these details are concentrated in few coefficients to avoid signal end effects, which are pure artifacts due to computations on the edges.
- The option scal = 'sln' handles threshold rescaling using a single estimation of level noise based on the first-level coefficients.
- When you suspect a nonwhite noise e, thresholds must be rescaled by a leveldependent estimation of the level noise. The same kind of strategy is used by estimating $\sigma_{l e v}$ level by level. This estimation is implemented in the file wnoisest, which handles the wavelet decomposition structure of the original signal s directly.
- The option scal = 'mln' handles threshold rescaling using a level-dependent estimation of the level noise.

References

Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics, 103, Lecture Notes in Statistics, Springer Verlag.

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, Vol. 81, pp. 425-455.

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 42 3, pp. 613-627.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptotia," Jour. Roy. Stat. Soc., series B, Vol. 57, No. 2, pp. 301-369.

See Also

thselect | wavedec | wdencmp | wfilters | wthresh
Introduced before R2006a

wdencmp

De-noising or compression

Syntax

[XC,CXC,LXC,PERFO,PERFL2] =

```
wdencmp('gbl',X,'wname',N,THR,SORH, KEEPAPP)
```

wdencmp('gbl', C,L, 'wname', N, THR, SORH, KEEPAPP)
[XC, CXC, LXC, PERFO, PERFL2] = wdencmp('lvd', X,'wname', N, THR, SORH)
[XC,CXC,LXC, PERFO, PERFL2] = wdencmp('lvd', C,L,'wname', N, THR, SORH)
[XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH)
[XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd',C,L,'wname',N,THR,SORH)

Description

wdencmp is a one- or two-dimensional de-noising and compression-oriented function.
wdencmp performs a de-noising or compression process of a signal or an image, using wavelets.
[XC,CXC, LXC, PERFO, PERFL2] =
wdencmp('gbl', X, 'wname', N, THR , SORH, KEEPAPP) returns a de-noised or compressed version XC of input signal X (one- or two-dimensional) obtained by wavelet coefficients thresholding using global positive threshold THR.

Additional output arguments [CXC, LXC] are the wavelet decomposition structure of XC (see wavedec or wavedec2 for more information). PERFO and PERFL2 are L^{2}-norm recovery and compression score in percentage.

PERFL2 $=100$ * (vector-norm of CXC / vector-norm of C) ${ }^{2}$ if [C, L] denotes the wavelet decomposition structure of X.

If X is a one-dimensional signal and 'wname ' an orthogonal wavelet, PERFL2 is reduced to

$$
\frac{100\|X C\|^{2}}{\|X\|^{2}}
$$

Wavelet decomposition is performed at level N and ' wname ' is a character vector containing wavelet name (see wmaxlev and wfilters for more information). SORH ('s' or ' h ') is for soft or hard thresholding (see wthresh for more information). If KEEPAPP = 1, approximation coefficients cannot be thresholded, otherwise it is possible.
wdencmp('gbl', C, L, 'wname', N, THR, SORH, KEEPAPP) has the same output arguments, using the same options as above, but obtained directly from the input wavelet decomposition structure [C, L] of the signal to be de-noised or compressed, at level N and using 'wname' wavelet.

For the one-dimensional case and 'lvd' option, [XC,CXC, LXC, PERFO, PERFL2] = wdencmp('lvd', X, 'wname', $\mathrm{N}, \mathrm{THR}, \mathrm{SORH}$) or [XC, CXC, LXC, PERFO, PERFL2] = wdencmp('lvd', C, L, 'wname', N, THR , SORH) have the same output arguments, using the same options as above, but allowing level-dependent thresholds contained in vector THR (THR must be of length N). In addition, the approximation is kept. Note that, with respect to wden (automatic de-noising), wdencmp allows more flexibility and you can implement your own de-noising strategy.

For the two-dimensional case and 'lvd' option, [XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd', X,'wname', $\mathrm{N}, \mathrm{THR}, \mathrm{SORH}$) or [XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd', C,L,'wname', N, THR, SORH).

THR must be a matrix 3 by N containing the level-dependent thresholds in the three orientations, horizontal, diagonal, and vertical.

Like denoising, the compression procedure contains three steps:
1 Decomposition.
2 Detail coefficient thresholding. For each level from 1 to N , a threshold is selected and hard thresholding is applied to the detail coefficients.
3 Reconstruction.
The difference with the denoising procedure is found in step 2.

Examples

Denoise 1-D Signal Using Default Global Threshold

Denoise 1-D electricity consumption data using the Donoho-Johnstone global threshold.

Load the signal and select a segment for denoising.
load leleccum; indx = 2600:3100;
$x=$ leleccum(indx);
Use ddencmp to determine the default global threshold and denoise the signal. Plot the original and denoised signals.
[thr, sorh, keepapp] = ddencmp('den','wv',x);
xd = wdencmp('gbl', x,'db3',2,thr, sorh, keepapp);
subplot(211)
plot(x); title('Original Signal');
subplot(212)
plot(xd); title('Denoised Signal');

Original Signal

Denoise 1-D Signal Using Default Global Threshold

Denoise 1-D electricity consumption data using the Donoho-Johnstone global threshold.
Load the signal and select a segment for denoising.

```
load leleccum; indx = 2600:3100;
x = leleccum(indx);
```

Use ddencmp to determine the default global threshold and denoise the signal. Plot the original and denoised signals.

```
[thr,sorh,keepapp] = ddencmp('den','wv',x);
xd = wdencmp('gbl',x,'db3',2,thr,sorh,keepapp);
subplot(211)
```

```
plot(x); title('Original Signal');
subplot(212)
plot(xd); title('Denoised Signal');
```

Original Signal

Denoised Signal

References

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image compression through wavelet transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia," Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301-369.

Donoho, D.L.; I.M. Johnstone, "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

See Also

ddencmp | wavedec | wavedec2 | wbmpen | wcompress | wdcbm2 | wden | wpdencmp | wthresh

Introduced before R2006a

wenergy

Energy for 1-D wavelet or wavelet packet decomposition

Syntax

[Ea,Ed] = wenergy(C,L)
E = wenergy(T)

Description

For a one-dimensional wavelet decomposition [C,L] (see wavedec for details), [Ea, Ed] $=$ wenergy (C, L) returns Ea, which is the percentage of energy corresponding to the approximation and Ed, which is the vector containing the percentages of energy corresponding to the details.

For a wavelet packet tree T (see wptree, wpdec, wpdec2), E = wenergy (T) returns a vector E, which contains the percentages of energy corresponding to the terminal nodes of the tree T. In this case, wenergy is a method of the wptree object T, which overloads the previous wenergy function.

Examples

```
% Example 1: 1-D wavelet decomposition
%-------------------------------------
load noisbump
[C,L] = wavedec(noisbump,4,'sym4');
[Ea,Ed] = wenergy(C,L)
Ea =
    88.2860
Ed =
\(2.1560 \quad 1.2286 \quad 1.4664 \quad 6.8630\)
```

```
% Example 2: 1-D wavelet packet decomposition
%----------------------------------------------
load noisbump
T = wpdec(noisbump,3,'sym4');
E = wenergy(T)
E =
95.0329 1.4664 0.6100 0.6408 0.5935 0.5445 0.5154
0.5965
```

Introduced before R2006a

wenergy2

Energy for 2-D wavelet decomposition

Syntax

[Ea,Eh,Ev,Ed] = wenergy2(C,S)
[Ea,EDetail] = wenergy2(C,S)

Description

For a two-dimensional wavelet decomposition [C,S] (see wavedec2 for details), [Ea,Eh,Ev,Ed] = wenergy2(C,S) returns Ea, which is the percentage of energy corresponding to the approximation, and vectors Eh, Ev, Ed, which contain the percentages of energy corresponding to the horizontal, vertical, and diagonal details, respectively.
[Ea,EDetail] = wenergy2(C,S) returns Ea, and EDetail, which is the sum of vectors Eh, Ev, and Ed.

Examples

load detail
[C,S] = wavedec2(X,2,'sym4');
[Ea,Eh,Ev,Ed] = wenergy2(C,S)
Ea $=$
89.3520

Eh =
$1.8748 \quad 2.7360$
$\mathrm{Ev}=$
$1.5860 \quad 2.6042$
Ed $=$
$0.7539 \quad 1.0932$

```
[Ea,EDetails] = wenergy2(C,S)
Ea =
    89.3520
EDetails =
    4.2147 6.4334
Introduced before R2006a
```


wentropy

Entropy (wavelet packet)

Syntax

$\mathrm{E}=$ wentropy $(\mathrm{X}, \mathrm{T}, \mathrm{P})$
$\mathrm{E}=$ wentropy (X, T)
$\mathrm{E}=$ wentropy $(\mathrm{X}, \mathrm{T}, 0)$

Description

$E=$ wentropy (X, T, P) returns the entropy E of the vector or matrix input X. In both cases, output E is a real number.
$\mathrm{E}=$ wentropy (X, T) is equivalent to $\mathrm{E}=$ wentropy $(\mathrm{X}, T, 0)$.
T is a character vector containing the type of entropy and P is an optional parameter depending on the value of T.

Entropy Type Name (\boldsymbol{T})	Parameter (P)	Comments
' shannon '		P is not used.
'log energy '		P is not used.
'threshold'	$0 \leq \mathrm{P}$	P is the threshold.
'sure'	$0 \leq \mathrm{P}$	P is the threshold.
'norm'	$1 \leq \mathrm{P}$	P is the power.
'user'	Character vector	P is a character vector containing the file name of your own entropy function, with a single input X.
FunName	No constraints on P	FunName is any other character vector except those used for the previous Entropy Type Names listed above. FunName contains the file name of your own entropy function, with X as input and

Entropy Type Name (T)	Parameter (P)	Comments
		P as additional parameter to your entropy function.

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last option described in the table above. The FunName option do the same as the ' user' option and in addition gives the possibility to pass a parameter to your own entropy function.

Functionals verifying an additive-type property are well suited for efficient searching of binary-tree structures and the fundamental splitting property of the wavelet packets decomposition. Classical entropy-based criteria match these conditions and describe information-related properties for an accurate representation of a given signal. Entropy is a common concept in many fields, mainly in signal processing. The following example lists different entropy criteria. Many others are available and can be easily integrated. In the following expressions, s is the signal and $\left(s_{i}\right)_{i}$ the coefficients of s in an orthonormal basis.

The entropy E must be an additive cost function such that $E(0)=0$ and

$$
E(s)=\sum_{i} E\left(s_{i}\right)
$$

- The (nonnormalized) Shannon entropy.

$$
E 1\left(s_{i}\right)=s_{i}{ }^{2} \log \left(s_{i}{ }^{2}\right)
$$

so,
$E 1(s)=-\sum_{i} s_{i}{ }^{2} \log \left(s_{i}^{2}\right)$,
with the convention $0 \log (0)=0$.

- The concentration in l^{p} norm entropy with $1 \leq p$.

$$
E 2\left(s_{i}\right)=\left|s_{i}\right|^{p} \text { so } E 2(s)=\sum_{i}\left|s_{i}\right|^{p}=\|s\|_{p}^{p}
$$

- The "log energy" entropy.

$$
E 3\left(s_{i}\right)=\log \left(s_{i}^{2}\right)
$$

so,

$$
E 3(s)=\sum_{i} \log \left(s_{i}^{2}\right)
$$

with the convention $\log (0)=0$.

- The threshold entropy.
$E 4\left(s_{i}\right)=1$ if $\left|s_{i}\right|>p$ and 0 elsewhere so $E 4(s)=\#\left\{i\right.$ such that $\left.\left|s_{i}\right|>p\right\}$ is the number of time instants when the signal is greater than a threshold p.
- The "SURE" entropy.
$\mathrm{E} 5(\mathrm{~s})=\mathrm{n}-\#\{\mathrm{i}$ such that
$\left.\left|s_{i}\right| \leq p\right\}+\sum_{i} \min \left(s_{i}{ }^{2}, p^{2}\right)$
For more information, see the section "Wavelet Packets for Compression and Denoising" of the User's Guide.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Generate initial signal.
$x=\operatorname{randn}(1,200)$;
\% Compute Shannon entropy of x.
e = wentropy (x,'shannon')
e =
-142.7607
\% Compute log energy entropy of x.
e = wentropy(x,'log energy')
e =
-281.8975

```
% Compute threshold entropy of x
% with threshold equal to 0.2.
e = wentropy(x,'threshold',0.2)
e =
    162
% Compute Sure entropy of x
% with threshold equal to 3.
e = wentropy(x,'sure',3)
e =
    -0.6575
% Compute norm entropy of x with power equal to 1.1.
e = wentropy(x,'norm',1.1)
e =
    160.1583
% Compute user entropy of x with a user defined
% function: userent for example.
% This function must be a code file, with first line
% of the following form:
%
% function e = userent(x)
%
% where x is a vector and e is a real number.
% Then a new entropy is defined and can be used typing:
%
% e = wentropy(x,'user','userent')
%
% or more directly
%
% e = wentropy(x,'userent')
```


References

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Donoho, D.L.; I.M. Johnstone, "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, Ser. I, t. 319, pp. 1317-1322.

Introduced before R2006a

wextend

Extend vector or matrix

Syntax

YEXT = wextend(TYPE, MODE, X, LEN)
YEXT = wextend (TYPE, MODE, X, LEN, LOC)

Description

YEXT $=$ wextend (TYPE, MODE, X, LEN $)$ returns an extended version of the input matrix or vector, X. The TYPE specifies the general method to extend the input. The MODE is the specific extension to use. The LEN is the amount by which to extend the input. The tables show the valid values for TYPE and MODE.

TYPE	Description
1, '1', '1d' or '1D'	1-D extension
2, '2', '2d ' or '2D'	2-D extension
'ar' or 'addrow'	Add rows
'ac' or 'addcol'	Add columns

The valid extension modes (MODE) are listed in the table below.

MODE	Description
'zpd '	Zero extension
'sp0'	Smooth extension of order 0
'spd ' (or 'sp1')	Smooth extension of order 1
'sym' or 'symh '	Symmetric-padding (half-point): boundary value symmetric replication
' symw'	Symmetric-padding (whole-point): boundary value symmetric replication
' asym' or 'asymh'	Antisymmetric-padding (half-point): boundary value antisymmetric replication

MODE	Description
' asymw'	Antisymmetric-padding (whole-point): boundary value antisymmetric replication
'ppd'	Periodized extension (1)
'per'	Periodized extension (2): If the signal length is odd, wextend adds an extra sample, equal to the last value, on the right and performs extension using the 'ppd ' mode. Otherwise, 'per ' reduces to 'ppd '. The same kind of rule stands for images.

For more information on symmetric extension modes see "References" on page 1-757.
YEXT= wextend(TYPE, MODE, X, LEN, LOC) uses the specified location, LOC, for the extension. Valid and default values of LOC and description of LEN for each TYPE are described in the table.

TYPE	LOC
1, '1', 1d' or '1D'	'l' (or 'u') for left (or up) extension. ' r ' (or ' d ') for right (or down) extension. ' b ' for extension on both sides. ' n ' null extension. Default: 'b' LEN is the length of the extension.
2, '2', '2d' or '2D'	[LOCROW, LOCCOL], where LOCROW and LOCCOL are 1D extension locations or ' n ' (none). Default: 'bb' LEN, expressed as [LROW, LCOL], is the number of rows LROW and number of columns LCOL to add.
'ar', or 'addrow'	' l' (or 'u') for left (or up) extension. ' r ' (or ' d ') for right (or down) extension. ' b ' for extension on both sides. ' n ' null extension. Default: 'b' LEN is the number of rows to add.
'ac ', or 'addcol'	'l' (or 'u') for left (or up) extension.

TYPE	LOC
	' r ' (or ' d ') for right (or down) extension.
	' b ' for extension on both sides.
	n null extension.
	Default: ' b '
	LEN is the number of columns to add.

Examples

```
% Original signal.
x = [llll
x =
    1 2 3
% 1-D extension length.
l = 2;
% Zero-padding extensions 1-D.
xextzpd1 = wextend('1','zpd',x,l)
xextzpd1 =
    0
xextzpd2 = wextend('1D','zpd',x,l,'b')
xextzpd2 =
    0
% Symmetric extension 1-D.
xextsym = wextend('1D','sym',x,l)
xextsym =
    2
% Periodic extension 1-D.
xextper = wextend('1D','per',x,l)
xextper =
```

3	3	1	2	3	3	1	2
\% Original image.							
$X=\left[\begin{array}{llll}1 & 2 & 3 ; 4 & 5\end{array}\right]$							
$X=$							
1	2	3					
4	5	6					
\% 2-D extension length.							
1 = 2;							
\% Zero-padding extension 2-D.							
$\text { Xextzpd }=\text { wextend }(2, ' z p d ', x, 1)$							
Xextzpd =							
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1	2	3	0	0	
0	0	4	5	6	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
\% Symmetric extension 2-D.							
Xextsym = wextend('2D', 'sym', X, l)							
Xextsym =							
5	4	4	5	6	6	5	
2	1	1	2	3	3	2	
2	1	1	2	3	3	2	
5	4	4	5	6	6	5	
5	4	4	5	6	6	5	
2	1	1	2	3	3	2	

References

Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley- Cambridge Press.

Introduced before R2006a

wfbm

Fractional Brownian motion synthesis

Syntax

```
FBM = wfbm(H,L)
FBM = wfbm(H,L,'plot')
FBM = wfbm(H,L,NS,W)
FBM = wfbm(H,L,W,NS)
wfbm(H,L,'plot',NS)
wfbm(H,L,'plot',W)
wfbm(H,L,'plot',NS,W)
wfbm(H,L,'plot',W,NS)
```


Description

FBM $=\mathrm{wfbm}(\mathrm{H}, \mathrm{L})$ returns a fractional Brownian motion signal FBM of the Hurst parameter $H(0<H<1)$ and length L, following the algorithm proposed by Abry and Sellan.

FBM $=\mathrm{wfbm}(\mathrm{H}, \mathrm{L}$, 'plot') generates and plots the FBM signal.
FBM $=w f b m(H, L, N S, W)$ or $F B M=w f b m(H, L, W, N S)$ returns the FBM using NS reconstruction steps and the sufficiently regular orthogonal wavelet W.
wfbm(H,L,'plot',NS) or wfbm(H,L,'plot', W) or wfbm(H,L, 'plot',NS,W) or wfbm(H,L, 'plot', W, NS $)$ generates and plots the FBM signal.
wfbm (H, L) is equivalent to $\operatorname{WFBM}\left(\mathrm{H}, \mathrm{L}, 6, \mathrm{C}^{\prime} \mathrm{db} 10^{\prime}\right)$.
wfbm ($H, L, N S$) is equivalent to $\operatorname{WFBM}\left(H, L, N S, d^{\prime} 10^{\prime}\right)$.
wfbm (H, L, W) is equivalent to $\operatorname{WFBM}(H, L, W, 6)$.
A fractional Brownian motion (fBm) is a continuous-time Gaussian process depending on the Hurst parameter $0<H<1$. It generalizes the ordinary Brownian motion
corresponding to $\mathrm{H}=0.5$ and whose derivative is the white noise. The fBm is selfsimilar in distribution and the variance of the increments is given by
$\operatorname{Var}(f B m(t)-f B m(s))=v|t-s|^{\wedge}(2 H)$
where v is a positive constant.

Examples

According to the value of H , the fBm exhibits for $\mathrm{H}>0.5$, long-range dependence and for $\mathrm{H}<0.5$, short or intermediate dependence. This example shows each situation using the wfbm file, which generates a sample path of this process.

```
%Generate fBm for H = 0.3 and H = 0.7
% Set the parameter H and the sample length
H = 0.3; lg = 1000;
% Generate and plot wavelet-based fBm for H = 0.3
fBm03 = wfbm(H,lg,'plot');
H = 0.7;
%Generate and plot wavelet-based fBm for H = 0.7
fBm07 = wfbm(H,lg,'plot');
% The last step is equivalent to
% Define wavelet and level of decomposition
%w = ' db10'; ns = 6;
% Generate
% fBm07 = wfbm(H,lg,'plot',w,ns);
```

fBm07 clearly exhibits a stronger low-frequency component and has, locally, less irregular behavior.

More About

Algorithms

Starting from the expression of the fBm process as a fractional integral of the white noise process, the idea of the algorithm is to build a biorthogonal wavelet depending on a given orthogonal one and adapted to the parameter H .

Then the generated sample path is obtained by the reconstruction using the new wavelet starting from a wavelet decomposition at a given level designed as follows: details coefficients are independent random Gaussian realizations and approximation coefficients come from a fractional ARIMA process.

This method was first proposed by Meyer and Sellan and implementation issues were examined by Abry and Sellan.

Nevertheless, the samples generated following this original scheme exhibit too many high-frequency components. To circumvent this undesirable behavior Bardet et al. propose downsampling the obtained sample by a factor 10 .

Two internal parameters delta $=10$ (the downsampling factor) and a threshold prec $=1 \mathrm{E}-4$, to evaluate series by truncated sums, can be modified by the user for extreme values of H .

A complete overview of long-range dependence process generators is available in Bardet et al.

References

Abry, P.; F. Sellan (1996), "The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation," Appl. and Comp. Harmonic Anal., 3(4), pp. 377-383.

Bardet, J.-M.; G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu (2003), "Generators of long-range dependence processes: a survey," Theory and applications of long-range dependence, Birkhäuser, pp. 579-623.

See Also
wfbmesti
Introduced before R2006a

wfbmesti

Parameter estimation of fractional Brownian motion

Syntax

HEST = wfbmesti(X)

Description

HEST $=$ wfbmesti (X) returns a one-by-three vector HEST which contains three estimates of the fractal index H of the input signal X. The signal X is assumed to be a realization of fractional Brownian motion with Hurst index H .

The first two elements of the vector are estimates based on the second derivative with the second computed in the wavelet domain.

The third estimate is based on the linear regression in loglog plot, of the variance of detail versus level.

A fractional Brownian motion (fBm) is a continuous-time Gaussian process depending on the so-called Hurst parameter $0<\mathrm{H}<1$. It generalizes the ordinary Brownian motion corresponding to $\mathrm{H}=0.5$ and whose derivative is the white noise. The fBm is self-similar in distribution and the variance of the increments is
$\operatorname{Var}(f B m(t)-f B m(s))=v|t-s|^{\wedge}(2 H)$
where v is a positive constant.
This special form of the variance of the increments suggests various ways to estimate the parameter H. One can find in Bardet et al. a survey of such methods. The wfbmesti file provides three different estimates. The first one, due to Istas and Lang, is based on the discrete second-order derivative. The second one is a wavelet-based adaptation and has similar properties. The third one, proposed by Flandrin, estimates H using the slope of the loglog plot of the detail variance versus the level. A more recent extension can be found in Abry et al.

Examples

Hurst Parameter Estimation

This example shows how to estimate the Hurst index of a fractional Brownian motion. The example simulates 1,000 realizations of fractional Brownian motion with $\mathrm{H}=0.6$. Each realization consists of 10,000 samples. At the end of the simulation, the three estimates of the Hurst index are compared.

Initialize the random number generator for repeatable results. Set the Hurst index equal to 0.6 and the length of the realizations to be 10,000 .

```
rng default;
H = 0.6;
len = 10000;
```

Generate 1,000 realizations of fractional Brownian motion and compute the estimates of the Hurst parameter.

```
n = 1000;
Hest = zeros(n,3);
for ii = 1:n
    fBm06 = wfbm(H,len);
    Hest(ii,:) = wfbmesti(fBm06);
end
```

Compare the estimates.

```
subplot(311), histogram(Hest(:,1));
title('Discrete second derivative estimator (DSOD)')
subplot(312), histogram(Hest(:,2));
title('Wavelet version of DSOD')
subplot(313), histogram(Hest(:,3));
title('Wavelet details regression estimator')
xlabel('True value of the parameter H = 0.6')
```


Discrete second derivative estimator (DSOD)

References

Abry, P.; P. Flandrin, M.S. Taqqu, D. Veitch (2003), "Self-similarity and longrange dependence through the wavelet lens," Theory and applications of long-range dependence, Birkhäuser, pp. 527-556.

Bardet, J.-M.; G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu (2003), "Semiparametric estimation of the long-range dependence parameter: a survey," Theory and applications of long-range dependence, Birkhäuser, pp. 557-577.

Flandrin, P. (1992), "Wavelet analysis and synthesis of fractional Brownian motion," IEEE Trans. on Inf. Th., 38, pp. 910-917.

Istas, J.; G. Lang (1994), "Quadratic variations and estimation of the local Hölder index of a Gaussian process," Ann. Inst. Poincaré, 33, pp. 407-436.

See Also
wfbm

Introduced before R2006a

wfilters

Wavelet filters

Syntax

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')
[F1,F2] = wfilters('wname','type')

Description

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') computes four filters associated with the orthogonal or biorthogonal wavelet named in the character vector 'wname'.

The four output filters are

- Lo_D, the decomposition low-pass filter
- Hi_D, the decomposition high-pass filter
- Lo_R, the reconstruction low-pass filter
- Hi_R, the reconstruction high-pass filter

Available orthogonal or biorthogonal wavelet names 'wname ' are listed in the table below.

Wavelet Families	Wavelets
Daubechies	'db1' or 'haar', 'db2', ..., 'db10', ..., 'db45'
Coiflets	'coif1', ..., 'coif5'
Symlets	'sym2', ..., 'sym8', ..., 'sym45'
Fejer-Korovkin filters	'fk4', 'fk6', 'fk8', 'fk14', 'fk22'
Discrete Meyer	'dmey '
Biorthogonal	'bior1.1', 'bior1.3', 'bior1.5' 'bior2.2','bior2.4', 'bior2.6', 'bior2.8'

Wavelet Families	Wavelets
	'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7'
Reverse Biorthogonal	'rbio1.1', 'rbio1.3', 'rbio1.5' 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8' 'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7' 'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'

[F1,F2] = wfilters('wname', 'type') returns the following filters:

Lo_D and Hi_D	(Decomposition filters)	If 'type' = 'd'
Lo_R and Hi_R	(Reconstruction filters)	If 'type' = 'r'
Lo_D and Lo_R	(Low-pass filters)	If 'type' = 'l'
Hi_D and Hi_R	(High-pass filters)	If 'type' = 'h'

Examples

\% Set wavelet name.
wname = 'db5';

```
% Compute the four filters associated with wavelet name given
% by the input character vector wname.
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname);
subplot(221); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(222); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(223); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(224); stem(Hi_R);
title('Reconstruction high-pass filter');
xlabel('The four filters for db5')
% Editing some graphical properties,
% the following figure is generated.
```


References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

See Also

biorfilt | orthfilt | waveinfo

Introduced before R2006a

wfusimg

Fusion of two images

Syntax

XFUS = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH) [XFUS,TXFUS,TX1,TX2] = wfusimg(X1,X2,WNAME, LEVEL,AFUSMETH, DFUSMETH) wfusimg(X1, X2, WNAME, LEVEL, AFUSMETH, DFUSMETH, FLAGPLOT)

Description

The principle of image fusion using wavelets is to merge the wavelet decompositions of the two original images using fusion methods applied to approximations coefficients and details coefficients (see Zeeuw and Misiti et al.).

XFUS = wfusimg(X1,X2,WNAME, LEVEL, AFUSMETH, DFUSMETH) returns the fused image XFUS obtained by fusion of the two original images X1 and X2. Each fusion method, defined by AFUSMETH and DFUSMETH, merges in a specific way detailed below, the decompositions of X1 and X2, at level LEVEL and using wavelet WNAME.

AFUSMETH and DFUSMETH define the fusion method for approximations and details, respectively.
[XFUS,TXFUS,TX1,TX2] = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH) returns, in addition to matrix XFUS, three objects of the class WDECTREE associated with XFUS, X1, and X2 respectively (see @WDECTREE).
wfusimg (X1, X2, WNAME, LEVEL, AFUSMETH, DFUSMETH, FLAGPLOT) also plots the objects TXFUS, TX1, and TX2.

Fusmeth denotes AFUSMETH or DFUSMETH. Available fusion methods are

- Simple - Fusmeth can be 'max', 'min', 'mean', 'img1', 'img2' or 'rand', which merges the two approximations or details structures obtained from X1 and X2 elementwise by taking the maximum, the minimum, the mean, the first element, the second element, or a randomly chosen element
- Parameter-dependent - Fusmeth is of the following form

Fusmeth = struct('name',nameMETH,'param',paramMETH)
where nameMETH can be

'linear'	
'UD_fusion'	Up-down fusion
'DU_fusion'	Down-up fusion
'RL_fusion'	Right-left fusion
'UserDEF'	User-defined fusion

For the description of these options and the paramMETH parameter, see wfusmat.

Examples

The following three examples examine the process of image fusion

- The first example merges two different images leading to a new image
- The second example restores an image from two fuzzy versions of an original image.
- The third example shows how to make an image fusion using a user defined fusion method.

```
% Example 1: Fusion of two different images
% Load two original images: a mask and a bust
load mask; X1 = X;
load bust; X2 = X;
% Merge the two images from wavelet decompositions at level 5
% using db2 by taking two different fusion methods
% fusion by taking the mean for both approximations and details
XFUSmean = wfusimg(X1,X2,'db2',5,'mean','mean');
% fusion by taking the maximum for approximations and the
% minimum for the details
XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');
% Plot original and synthesized images
colormap(map);
subplot(221), image(X1), axis square, title('Mask')
subplot(222), image(X2), axis square, title('Bust')
subplot(223), image(XFUSmean), axis square,
```

```
title('Synthesized image, mean-mean')
subplot(224), image(XFUSmaxmin), axis square,
title('Synthesized image, max-min')
```


\% Example 2: Restoration by fusion of fuzzy images
\% Load two fuzzy versions of an original image
load cathe_1; X1 = X;
load cathe_2; X2 = X;
\% Merge the two images from wavelet decompositions at level 5
\% using sym4 by taking the maximum of absolute value of the
\% coefficients for both approximations and details
XFUS = wfusimg(X1, X2,'sym4',5,'max','max');
\% Plot original and synthesized images
colormap (map) ;
subplot(221), image(X1), axis square,
title('Catherine 1')
subplot(222), image(X2), axis square,
title('Catherine 2')
subplot(223), image(XFUS), axis square,
title('Synthesized image')

\% The synthesized image is a restored version of good \% quality of the common underlying original image.
\% Example 3: Fusion using a user defined fusion method.
\% This example calls a user fusion method defined by the \% file myfus_FUN.m which is listed below at the end of \% the example.
\% load two images of the same size.
load mask; $A=X$;
load bust; $\mathrm{B}=\mathrm{X}$;
\% Define the fusion method and call the fusion function
Fus_Method = struct('name','userDEF','param','myfus_FUN');
C = wfusmat(A,B,Fus_Method);
figure;
colormap(pink(220))
subplot(1,3,1), image(A), title('Original Image 1 '), axis square subplot(1,3,2), image(C), title('Fusioned Image'), axis square subplot(1,3,3), image(B), title('Original Image 2'), axis square

%********************************
%********************************
% User defined fusion method. *
% User defined fusion method. *
%********************************
%********************************
function C = myfus_FUN(A,B)
function C = myfus_FUN(A,B)
D = logical(triu(ones(size(A)))); t = 0.3;
D = logical(triu(ones(size(A)))); t = 0.3;
C = A;
C = A;
C(D) = t*A(D)+(1-t)*B(D);
C(D) = t*A(D)+(1-t)*B(D);
C(~D) = t*B(~D)+(1-t)*A(~D);
C(~D) = t*B(~D)+(1-t)*A(~D);

More About

Tips

X1 and X2 must be of same size (see wextend to resize images) and represent indexed images or truecolor images, which are m-by-n matrices or m-by-n-by- 3 arrays, respectively.

For more information on image formats, see the image and imfinfo reference pages.

References

Zeeuw, P.M. (1998), "Wavelet and image fusion," CWI, Amsterdam, March 1998, http: / www.cwi.nl/~pauldz/

Misiti, M.; Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), "Les ondelettes et leurs applications," Hermes.

See Also
wfusmat | wextend
Introduced before R2006a

wfusmat

Fusion of two matrices or arrays

Syntax

C = wfusmat (A, B, METHOD)

Description

$C=$ wfusmat $(A, B, M E T H O D)$ returns the fused matrix C obtained from the matrices A and B using the fusion method defined by METHOD.

The matrices A and B must be of the same size. The output matrix C is of the same size as A and B .

Available fusion methods are

- Simple, where METHOD is
- 'max':D $=\operatorname{abs}(A) \geq \operatorname{abs}(B) ; C=A(D)+B(\sim D)$
- 'min': $D=\operatorname{abs}(A) \leq a b s(B) ; C=A(D)+B(\sim D)$
- 'mean': C = (A+B) / 2 ; D = ones(size(A))
- 'rand ' $: \mathrm{C}=\mathrm{A}(\mathrm{D})+\mathrm{B}(\sim \mathrm{D}) ; \mathrm{D}$ is a Boolean random matrix
- 'img1': C = A
- 'img2': C=B
- Parameter-dependent, where METHOD is of the following form:

METHOD = struct('name', nameMETH, 'param', paramMETH)
where nameMETH can be

- 'linear': C = A*paramMETH + B*(1-paramMETH),
where $0 £$ paramMETH ≤ 1
- 'UD_fusion': Up-down fusion, with paramMETH ≥ 0

```
x = linspace(0,1,size(A,1));
P = x.^paramMETH;
```

Then each row of C is computed with
$C(i,:)=A(i,:) *(1-P(i))+B(i,:) * P(i) ;$
So $C(1,:)=A(1,:)$ and $C(e n d,:)=A(e n d,:)$

- 'DU_fusion': Down-up fusion
- 'LR_fusion': Left-right fusion (columnwise fusion)
- 'RL_fusion': Right-left fusion (columnwise fusion)
- 'UserDEF': User-defined fusion, paramMETH is a character vector 'userFUNCTION' containing a function name such that $\mathrm{C}=$ userFUNCTION (A, B).

In addition, $[C, D]=$ wfusmat $(A, B, M E T H O D)$ returns the Boolean matrix D when defined, or an empty matrix otherwise.

Introduced before R2006a

wkeep

Keep part of vector or matrix

Syntax

```
Y = wkeep(X,L,OPT)
Y = wkeep(X,L,FIRST)
Y = wkeep(X,L)
Y = wkeep(X,L,'c')
Y = wkeep(X,S,[FIRSTR FIRSTC])
```


Description

wkeep is a general utility.
For a vector, $Y=$ wkeep $(X, L, O P T)$ extracts the vector Y from the vector X. The length of Y is L.

If OPT is equal to ' c ', ' l ', or ' r ', Y is the central, left, or right part of X .
$Y=$ wkeep $(X, L, F I R S T)$ returns the vector $X(F I R S T: F I R S T+L-1)$.
$Y=$ wkeep (X, L) is equivalent to $Y=\operatorname{wkeep}\left(X, L, C^{\prime}\right)$.
For a matrix, $Y=$ wkeep (X, S) extracts the central part of the matrix X. The size of Y is S.
$Y=$ wkeep ($X, S,[$ FIRSTR FIRSTC] $)$ extracts the submatrix of matrix X, of size S and starting from X (FIRSTR, FIRSTC).

Examples

\% For a vector.
$x=1: 10$;
$y=\operatorname{wkeep}\left(x, 6, c^{\prime}\right)$
$y=$

```
        3
    y = wkeep(x,6)
y =
    3 4}4
y = wkeep(x,7,'c')
y =
2 
y = wkeep(x,6,'l')
y =
    1 2 
y = wkeep(x,6,'r')
y =
    5 
% For a matrix.
x = magic(5)
x =
\begin{tabular}{rrrrr}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{tabular}
y = wkeep(x,[3 2])
y =
    5 7
    6 13
    12 19
```

Introduced before R2006a

wmaxlev

Maximum wavelet decomposition level

Syntax

L = wmaxlev(S,'wname')

Description

wmaxlev is a one- or two-dimensional wavelet or wavelet packets oriented function.
wmaxlev can help you avoid unreasonable maximum level values. $\mathrm{L}=$
wmaxlev(S, 'wname') returns the maximum level decomposition of signal or image of size S using the wavelet named in the character vector 'wname' (see wfilters for more information).
wmaxlev gives the maximum allowed level decomposition, but in general, a smaller value is taken.

Usual values are 5 for the one-dimensional case, and 3 for the two-dimensional case.

Examples

```
% For a 1-D signal.
s = 2^10;
w = 'db1';
% Compute maximum level decomposition.
% The rule is the last level for which at least
% one coefficient is correct.
l = wmaxlev(s,w)
l =
    10
% Change wavelet.
w = 'db7';
```

```
% Compute maximum level decomposition.
l = wmaxlev(s,w)
l =
    6
% For a 2-D signal.
s = [2^9 2^7];
w = 'db1';
% Compute maximum level decomposition.
l = wmaxlev(s,w)
l =
    7
% which is the same as:
l = wmaxlev(min(s),w)
l =
    7
% Change wavelet.
w = 'db7';
% Compute maximum level decomposition.
l = wmaxlev(s,w)
l =
    3
```


See Also

wavedec | wpdec | wavedec2 | wpdec2

Introduced before R2006a

wmpalg

Matching pursuit

Syntax

```
YFIT = wmpalg(MPALG,Y,MPDICT)
[YFIT,R] = wmpalg(...)
[YFIT,R,COEFF] = wmpalg(...)
[YFIT,R,COEFF,IOPT] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg(...,Name,Value)
```


Description

YFIT $=$ wmpalg (MPALG, Y, MPDICT) returns an adaptive greedy approximation, YFIT, of the input signal, Y, in the dictionary, MPDICT. The adaptive greedy approximation uses the matching pursuit algorithm, MPALG. The dictionary, MPDICT, is typically an overcomplete set of vectors constructed using wmpdictionary.
[YFIT, R] = wmpalg(...) returns the residual, R, which is the difference vector between Y and YFIT at the termination of the matching pursuit.
[YFIT, R, COEFF] = wmpalg (...) returns the expansion coefficients, COEFF. The number of expansion coefficients depends on the number of iterations in the matching pursuit.
[YFIT, R, COEFF, IOPT] = wmpalg(...) returns the column indices of the retained atoms, IOPT. The length of IOPT equals the length of COEFF and is determined by the number of iterations in the matching pursuit.
[YFIT, R, COEFF, IOPT, QUAL] = wmpalg(...) returns the proportion of retained signal energy, QUAL, for each iteration of the matching pursuit. QUAL is the ratio of the ℓ^{2} squared norm of the expansion coefficient vector, COEFF, to the ℓ^{2} squared norm of the input signal, Y.
[YFIT, R, COEFF, IOPT, QUAL , X] = wmpalg (...) returns the normalized dictionary, X. X contains the unit vectors in the ℓ^{2} norm corresponding to the columns of MPDICT.
[YFIT,R,COEFF,IOPT, QUAL, X] = wmpalg(..., Name, Value) returns an adaptive greedy approximation with additional options specified by one or more Name, Value pair arguments.

Input Arguments

MPALG

Matching pursuit algorithm as a character vector. Valid entries are:

- 'BMP' - Basic matching pursuit
- 'OMP' - Orthogonal matching pursuit
- 'WMP' - Weak orthogonal matching pursuit

See "Matching Pursuit Algorithms".
Default: 'BMP'

MPDICT

Matching pursuit dictionary. MPDICT is a N -by-P matrix where N is equal to the length of the input signal, Y. You can construct MPDICT using wmpdictionary. In matching pursuit, MPDICT is commonly a frame, or overcomplete set of vectors. You may use the Name-Value pair ' lstcpt' to specify a dictionary instead of using MPDICT. If you specify a value for 'lstcpt', wmpalg calls wmpdictionary.

Y

Signal for matching pursuit. Y is 1-D, real-valued row or column vector. The row dimension of MPDICT must match the length of Y.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

'itermax'

Positive integer fixing the maximum number of iterations of the matching pursuit algorithm. If you do not specify a 'maxerr' value, the number of expansion coefficients, COEFF, the number of dictionary vector indices, IOPT, and the length of the QUAL vector equal the value of 'itermax'.

Default: 25

'lstcpt'

A cell array of cell arrays with valid subdictionaries. This name-value pair is only valid if you do not input a dictionary in MPDICT. Each cell array describes one subdictionary. Valid subdictionaries are:

- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name with the number of vanishing moments and an optional decomposition level and extension mode. For example, \{'sym4', 5$\}$ denotes the Daubechies least-asymmetric wavelet with 4 vanishing moments at level 5 and the default extension mode 'per'. If you do not specify the optional number level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name preceded by wp with the number of vanishing moments and an optional decomposition level and extension mode. For example, \{'wpsym4' 5 \} denotes the Daubechies leastasymmetric wavelet packet with 4 vanishing moments at level 5 . If you do not specify the optional number level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- 'dct ' Discrete cosine transform-II basis. The DCT-II orthonormal basis is:

$$
\phi_{k}(n)= \begin{cases}\frac{1}{\sqrt{N}} & k=0 \\ \sqrt{\frac{2}{N}} \cos \left(\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right) & k=1,2, \ldots, N-1\end{cases}
$$

- ' sin ' Sine subdictionary. The sine subdictionary is:

$$
\phi_{k}(t)=\sin (2 \pi k t) \quad k=1,2, \ldots\left\lceil\frac{N}{2}\right\rceil \quad 0 \leq t \leq 1
$$

- 'cos ' Cosine subdictionary. The cosine subdictionary is

$$
\phi_{k}(t)=\cos (2 \pi k t) \quad k=1,2, \ldots\left\lceil\frac{N}{2}\right\rceil \quad 0 \leq t \leq 1
$$

- 'poly ' Polynomial subdictionary. The polynomial subdictionary is:

$$
p_{n}(t)=t^{n-1} \quad n=1,2, \ldots 20 \quad 0 \leq t \leq 1
$$

- 'RnIdent ' The shifted Kronecker delta subdictionary. The shifted Kronecker delta subdictionary is:

$$
\phi_{k}(n)=\delta(n-k) \quad k=0,1, \ldots N
$$

If you use the 'lstcpt ' name-value pair to generate your dictionary, you can use the additional 'addbeg' and ' addend ' name-value pairs to append and addend dictionary atoms. See wmpdictionary for details.

'maxerr'

Cell array containing the name of the norm and the maximum relative error in the norm expressed as a percentage. Valid norms are 'L1', 'L2', and 'Linf'. The relative error expressed as a percentage is

$$
100 \frac{\|R\|}{\|Y\|}
$$

where R is the residual at each iteration and Y is the input signal. For example, \{'L1', 10\} sets maximum acceptable ratio of the L1 norms of the residual to the input signal to 0.10 .

If you specify 'maxerr', the matching pursuit terminates when the first of the following conditions is satisfied:

- The number of iterations reaches the minimum of the length of the input signal, Y , or 500:
min(length (Y),500)
- The relative error falls below the percentage you specify with the 'maxerr' namevalue pair.

'stepplot'

Number of iterations between successive plots. 'stepplot ' requires a positive integer. This name-value pair is only valid when 'typeplot' is 2 or 3 ('movie' or 'stepwise').

'typeplot'

Type of plot to produce during the progression of matching pursuit. Valid entries for 'typeplot' are: 0 or 'none', 1 or 'one', 2 or 'movie', 3 or 'stepwise'. When 'typeplot' is 'movie' or 'stepwise', the plot updates based on the value of 'stepplot'.

Default: 0 or ' $n o n e$ '
'wmpcfs'
Optimality factor for weak orthogonal matching pursuit. The optimality factor is a real number in the interval (0,1]. This name-value pair is only valid when MPALG is 'WMP '.

Default: 0.6

Output Arguments

YFIT

Adaptive greedy approximation of the input signal, Y , in the dictionary

R

Residual after matching pursuit terminates

COEFF

Expansion coefficients in the dictionary. The selected dictionary atoms weighted by the expansion coefficients yield the approximated signal, YFIT.

IOPT

Column indices of the selected dictionary atoms. Using the column indices in IOPT with the expansion coefficients in COEFF, you can form the approximated signal, YFIT.

QUAL

Proportion of retained signal energy for each iteration in the matching pursuit. QUAL is a vector with each element equal to

$$
\frac{\|\left.\alpha_{k}\right|_{2} ^{2}}{\| Y| |_{2}^{2}}
$$

where α_{k} is the vector of expansion coefficients after the k-th iteration.

X

The normalized matching pursuit dictionary. X is an N -by-P matrix where N is the length of the input signal, Y . The columns of X have unit norm.

Examples

Adaptive Approximation using Orthogonal Matching Pursuit

Approximate the cuspamax signal with the dictionary using orthogonal matching pursuit.

Use a dictionary consisting of sym4 wavelet packets and the DCT-II basis.

```
load cuspamax;
mpdict = wmpdictionary(length(cuspamax),'LstCpt',...
    {{'wpsym4',2},'dct'});
yfit = wmpalg('OMP',cuspamax,mpdict);
plot(cuspamax,'k'); hold on;
plot(yfit,'linewidth',2); legend('Original Signal',...
    'Matching Pursuit');
```


Return Residual, Expansion Coefficients, Selected Atoms, and Approximation Quality
Obtain the expansion coefficients in the dictionary, the column indices of the selected dictionary atoms, and the proportion of retained signal energy.

Create a dictionary consisting of sym4 wavelet packets and the DCT-II basis. Approximate the cuspamax signal with the dictionary using orthogonal matching pursuit.

```
load cuspamax;
mpdict = wmpdictionary(length(cuspamax),'LstCpt',...
    {{'wpsym4',2},'dct'});
```

```
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict);
```


Specify the Maximum Number of Iterations

This example shows how to set the maximum number of iterations of the orthogonal matching pursuit to 50 .

```
load cuspamax;
lstcpt = {{'wpsym4',1},{'wpsym4',2},'dct'};
mpdict = wmpdictionary(length(cuspamax),'LstCpt',lstcpt);
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict,...
    itermax',50);
```


Stepwise Plot of Weak Orthogonal Matching Pursuit

This example shows how to allow for a suboptimal choice in the update of the orthogonal matching pursuit. Relax the requirement to be 0.8 times the optimal assignment. Plot the results stepwise and update the plot every 5 iterations.

```
load cuspamax;
lstcpt = {{'wpsym4',1},{'wpsym4',2},'dct'};
mpdict = wmpdictionary(length(cuspamax),'LstCpt',lstcpt);
[yfit,r,coeff,iopt,qual] = wmpalg('WMP',cuspamax,...
    mpdict,'wmpcfs',0.8, 'typeplot','stepwise','stepplot',3);
```


Matching Pursuit of Electricity Consumption Data

Obtain a matching pursuit of electricity consumption measured every minute over a 24hour period.

Load and plot data. The data shows electricity consumption sampled every minute over a 24 -hour period. Because the data is centered, the actual usage values are not interpretable.

```
load elec35_nor;
y = signals(32,:);
plot(y); xlabel('Minutes'); ylabel('Usage');
set(gca,'xlim',[1 1440]);
```


Construct a dictionary for matching pursuit consisting of the Daubechies' extremal-phase wavelet with 2 vanishing moments at level 2 , the Daubechies' least-asymmetric wavelet with 4 vanishing moments at levels 1 and 4 , the discrete cosine transform-II basis, and the sine basis.

```
dictionary = {{'db4',2},'dct','sin',{'sym4',1},{'sym4',4}};
[mpdict,nbvect] = wmpdictionary(length(y),'lstcpt',dictionary);
```

Implement orthogonal matching pursuit to obtain a signal approximation in the dictionary. Use 35 iterations. Plot the result.

```
[yfit,r,coef,iopt,qual] = wmpalg('OMP',y,mpdict,'itermax',35);
plot(y); hold on;
plot(yfit,'r'); xlabel('Minutes'); ylabel('Usage');
```

```
legend('Original Signal','OMP','Location','NorthEast');
set(gca,'xlim',[1 1440]);
```


Using the expansion coefficients in coef and the atom indices in iopt, construct the signal approximation, yhat, directly from the dictionary. Compare yhat with yfit returned by wmpalg.

```
[~,I] = sort(iopt);
X = mpdict(:,iopt(I));
yhat = X*coef(I);
max(abs(yfit-yhat))
ans =
```


2.2204e-15

- "Matching Pursuit"
- "Matching Pursuit Using Wavelet Analyzer App"

More About

- "Matching Pursuit Algorithms"

References

[1] Cai, T.T. and Wang,L. "Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise". IEEE ${ }^{\circledR}$ Transactions on Information Theory, vol. 57, 7, 4680-4688, 2011.
[2] Donoho, D., Elad, M., and Temlyakov, V. "Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise". IEEE Transactions on Information Theory. Vol. 52, 1, 6-18, 2004.
[3] Mallat, S. and Zhang, Z. "Matching Pursuits with Time-Frequency Dictionaries". IEEE Transactions on Signal Processing, vol. 41, 12, 3397-3415, 1993
[4] bTropp, J.A. "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory, 50, pp. 2231-2242, 2004.

See Also

Wavelet Analyzer \| wmpdictionary

Introduced in R2012a

wmpdictionary

Dictionary for matching pursuit

Syntax

```
MPDICT = wmpdictionary(N)
[MPDICT,NBVECT] = wmpdictionary(N)
[MPDICT,NBVECT]= wmpdictionary(N,Name,Value)
[MPDICT,NBVECT,LST] = wmpdictionary(N,Name,Value)
[MPDICT,NBVECT,LST,LONGS] = wmpdictionary(N,Name,Value)
```


Description

MPDICT = wmpdictionary (N) returns the N-by-P dictionary, MPDICT, for the default subdictionaries $\{\{' \operatorname{sym} 4$ ', 5$\},\{' w p s y m 4$ ', 5$\}$, 'dct', 'sin' $\}$. The column dimension of MPDICT depends on N .
[MPDICT, NBVECT] = wmpdictionary(N) returns the row vector, NBVECT, which contains the number of vectors in each subdictionary. The order of the elements in NBVECT corresponds to the order of the subdictionaries and any prepended or appended subdictionaries. The sum of the elements in NBVECT is the column dimension of MPDICT.
[MPDICT, NBVECT] = wmpdictionary(N, Name, Value) returns the dictionary, MPDICT, using additional options specified by one or more Name, Value pair arguments.
[MPDICT, NBVECT,LST] = wmpdictionary (N,Name, Value) returns the cell array, LST, with descriptions of the subdictionaries.
[MPDICT,NBVECT,LST,LONGS] = wmpdictionary(N,Name,Value) returns the cell array, LONGS, containing the number of vectors in each subdictionary. LONGS is only useful for wavelet subdictionaries. In wavelet subdictionaries, the corresponding element in LONGS gives the number of scaling functions at the coarsest level and wavelet functions by level. See "Visualize Haar Wavelet Dictionary" on page 1-795 for an example using LONGS.

Input Arguments

N

A positive integer equal to the length of your input signal. The dictionary atoms are constructed to have N elements. N equals the row dimension of the dictionary, MPDICT.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'addbeg'

Prepended subdictionary. The prepended subdictionary is an N -by-M matrix where N is the length of the input signal. wmpdictionary does not check that the M column vectors of the prepended dictionary form a basis. If you do not specify a value for lstcpt, the subdictionary is prepended to the default dictionary. The column vectors in the prepended subdictionary do not have to be unit-norm.

```
'addend'
```

Appended subdictionary. The appended subdictionary is a N -by-M matrix where N is the length of the input signal. wmpdictionary does not check that the M column vectors of the prepended dictionary form a basis. If you do not specify a value for lstcpt, the subdictionary is appended to the default dictionary. The column vectors in the appended subdictionary do not have to be unit-norm.

'lstcpt'

A cell array of cell arrays with valid subdictionaries. Each cell array describes one subdictionary. Valid subdictionaries are:

- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name with the number of vanishing moments and an optional decomposition level and extension mode. For example, \{'sym4',5\} denotes the Daubechies least-asymmetric wavelet with 4 vanishing moments at level 5 and the default extension mode ' per'. If you do
not specify the optional level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name preceded by wp with the number of vanishing moments and an optional decomposition level and extension mode. For example, \{'wpsym4',5\} denotes the Daubechies leastasymmetric wavelet packet with 4 vanishing moments at level 5 . If you do not specify the optional level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- 'dct ' Discrete cosine transform-II basis. The DCT-II orthonormal basis is:

$$
\phi_{k}(n)= \begin{cases}\frac{1}{\sqrt{N}} & k=0 \\ \sqrt{\frac{2}{N}} \cos \left(\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right) & k=1,2, \ldots, N-1\end{cases}
$$

- 'sin' Sine subdictionary. The sine subdictionary is

$$
\phi_{k}(t)=\sin (2 \pi k t) \quad k=1,2, \ldots\left\lceil\frac{N}{2}\right\rceil \quad 0 \leq t \leq 1
$$

where t is a linearly-spaced N-point vector.

- 'cos ' Cosine subdictionary. The cosine subdictionary is

$$
\phi_{k}(t)=\cos (2 \pi k t) \quad k=1,2, \ldots\left\lceil\frac{N}{2}\right\rceil \quad 0 \leq t \leq 1
$$

where t is a linearly-spaced N-point vector.

- 'poly ' Polynomial subdictionary. The polynomial subdictionary is:

$$
p_{n}(t)=t^{n-1} \quad n=1,2, \ldots 20 \quad 0 \leq t \leq 1
$$

where t is a linearly-spaced N-point vector.

- 'RnIdent' The shifted Kronecker delta subdictionary. The shifted Kronecker delta subdictionary is:

$$
\phi_{k}(n)=\delta(n-k) \quad k=0,1, \ldots N
$$

Default: \{\{'sym4',5\}, \{'wpsym4', 5\}, 'dct', 'sin'\}

Output Arguments

MPDICT

Matching pursuit dictionary. MPDICT is an N -by-P matrix with the row dimension, N , equal to the length of the input signal. The column dimension of the matrix depends on the size of the concatenated subdictionaries.

NBVECT

Number of vectors in subdictionaries. NBVECT is a row vector containing the number of elements in each subdictionary. The order of the elements in NBVECT corresponds to the order of the subdictionaries and any prepended or appended subdictionaries.

LST

Cell array describing the dictionary. LST is a 1-by-N cell array where N is the number of subdictionaries. Each element of the cell array contains a description of a subdictionary. If you specify a prepended or appended subdictionary, the first element of LST is 'AddBeg ' or 'AddEnd '. If you specify a level for the wavelet or wavelet packet, the corresponding element of LST is a 1-by-2 cell array containing the wavelet or wavelet packet name in the first element and the level in the second element.

LONGS

Cell array containing the number of elements for each subdictionary. LONGS is useful only for wavelet subdictionaries. If you specify a wavelet subdictionary, the corresponding element of LONGS provides the number of scaling functions at the coarsest level and the number of wavelets at each level. See "Visualize Haar Wavelet Dictionary" on page 1-795 for an example using LONGS.

Examples

Default Dictionary

Create the default dictionary to represent a signal of length 100 .

mpdict $=$ wmpdictionary(100);

Discrete Cosine Transform and Kronecker Delta Dictionary

Create a DCT and shifted Kronecker delta dictionary to represent a signal of length 100.

```
mpdict = wmpdictionary(100,'lstcpt',{'dct','RnIdent'});
```


Haar Wavelet Packets and Discrete Cosine Transform Dictionary

Create a Haar wavelet packet (level 2) and DCT dictionary. Return the number of atoms in each subdictionary.

```
[mpdict,nbvect] = wmpdictionary(100,'lstcpt',{{'wphaar',2},'dct'});
```


Visualize Haar Wavelet Dictionary

Use the output argument, LONGS, to visualize a dictionary. Create a Haar wavelet dictionary consisting of level-2 scaling functions, and level-1 and level-2 wavelet functions.

```
[mpdict,~,~,longs] = wmpdictionary(100,'lstcpt',{{'haar',2}});
for nn = 1:size(mpdict,2)
    if (nn <= longs{1}(1))
        plot(mpdict(:,nn),'k','linewidth',2); grid on;
    xlabel('Translation');
        title('Haar Scaling Function - Level 2');
    elseif (nn>longs{1}(1) & nn<= longs{1}(1)+longs{1}(2))
            plot(mpdict(:,nn),'r','linewidth',2); grid on;
            xlabel('Translation');
        title('Haar Wavelet - Level 2');
    else
            title('Haar Wavelet - Level 1');
            plot(mpdict(:,nn),'b','linewidth',2); grid on;
            title('Haar Wavelet - Level 1');
            xlabel('Translation');
    end
            pause(0.2);
end
```


- "Matching Pursuit"
- "Matching Pursuit Using Wavelet Analyzer App"

More About

Matching Pursuit

Matching pursuit refers to a number of greedy or weak-greedy algorithms for computing an adaptive nonlinear expansion of a signal in a dictionary. In the majority of matching pursuit applications, a dictionary is an overcomplete set of vectors. The elements of the dictionary are referred to as atoms and are typically constructed to have certain time/
frequency or time/scale properties. Matching pursuit takes the NP-hard problem of finding the best nonlinear expansion in a dictionary and implements it in an energyperserving formulation that guarantees convergence. See "Matching Pursuit Algorithms" for more details.

- "Matching Pursuit Algorithms"

References

[1] Cai, T.T. and L. Wang "Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise". IEEE Transactions on Information Theory, vol. 57, 7, 4680-4688, 2011.
[2] Donoho, D., M. Elad, and V. Temlyakov "Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise". IEEE Transactions on Information Theory, 52,1, 6-18, 2004.
[3] Mallat, S. and Z. Zhang "Matching Pursuits with Time-Frequency Dictionaries". IEEE Transactions on Signal Processing, vol. 41, 12, 3397-3415, 1993
[4] Tropp, J.A. "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory, 50, pp. 2231-2242, 2004.

See Also

Wavelet Analyzer | wmpalg

Introduced in R2012a

wmspca

Multiscale Principal Component Analysis

Syntax

[X_SIM,QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,NPC)
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)
[...] = wmspca(DEC,NPC)
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)

Description

[X_SIM, QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,NPC) or [...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC) returns a simplified version X_SIM of the input matrix X obtained from the wavelet-based multiscale principal component analysis (PCA).

The input matrix X contains P signals of length N stored columnwise ($N>P$).

Wavelet Decomposition Parameters

The wavelet decomposition is performed using the decomposition level LEVEL and the wavelet WNAME.

EXTMODE is the extended mode for the DWT (See dwtmode).
If a decomposition DEC obtained using mdwtdec is available, you can use
[...] = wmspca(DEC,NPC) instead of
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC).

Principal Components Parameter: NPC

If NPC is a vector, then it must be of length LEVEL+2. It contains the number of retained principal components for each PCA performed:

- NPC (d) is the number of retained noncentered principal components for details at level d , for $1<=\mathrm{d}<=$ LEVEL.
- NPC(LEVEL+1) is the number of retained non-centered principal components for approximations at level LEVEL.
- NPC(LEVEL+2) is the number of retained principal components for final PCA after wavelet reconstruction.

NPC must be such that $0<=$ NPC $(\mathrm{d})<=\mathrm{P}$ for $1<=\mathrm{d}<=$ LEVEL+2.
If NPC = 'kais' (respectively, 'heur'), then the number of retained principal components is selected automatically using Kaiser's rule (or the heuristic rule).

- Kaiser's rule keeps the components associated with eigenvalues greater the mean of all eigenvalues.
- The heuristic rule keeps the components associated with eigenvalues greater than 0.05 times the sum of all eigenvalues.

If NPC = 'nodet ', then the details are "killed" and all the approximations are retained.

Output Parameters

X_SIM is a simplified version of the matrix X.
QUAL is a vector of length P containing the quality of column reconstructions given by the relative mean square errors in percent.

NPC is the vector of selected numbers of retained principal components.
DEC_SIM is the wavelet decomposition of X_SIM
PCA_Params is a structure array of length LEVEL+2 such that:

- PCA_Params (d). pc is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.

- PCA_Params (d). variances is the principal component variances vector.
- PCA_Params(d).npc = NPC

Examples

Wavelet Principal Component Analysis of Noisy Multivariate Signal

Use wavelet multiscale principal component analysis to denoise a multivariate signal.
Load the dataset consisting of 4 signals of length 1024. Plot the original signals and the signals with additive noise.

```
load ex4mwden;
kp = 0;
for i = 1:4
    subplot(4,2,kp+1), plot(x_orig(:,i)); axis tight;
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x(:,i)); axis tight;
    title(['Noisy signal ',num2str(i)])
    kp = kp + 2;
end
```


Perform the first multiscale wavelet PCA using the Daubechies' least-asymmetric wavelet with 4 vanishing moments, sym4. Obtain the multiresolution decomposition down to level 5 . Use the heuristic rule to decide how many principal components to retain.

```
level = 5;
wname = 'sym4';
npc = 'heur';
[x_sim, qual, npc] = wmspca(x,level,wname,npc);
```

Plot the result and examine the quality of the approximation.
qual kp = 0;

```
for i = 1:4
    subplot(4,2,kp+1), plot(x(:,i)); axis tight;
    title(['Noisy signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight;
    title(['First PCA ',num2str(i)])
    kp = kp + 2;
end
```

qual =
$97.4372 \quad 94.5520 \quad 97.736299 .5219$

Noisy signal 1

Noisy signal 2

Noisy signal 3

Noisy signal 4

First PCA 1

First PCA 2

First PCA 3

First PCA 4

The quality results are all close to 100%. The npc vector gives the number of principal components retained at each level.

Suppress the noise by removing the principal components at levels $1-3$. Perform the multiscale PCA again.

```
npc(1:3) = zeros(1,3);
[x_sim, qual, npc] = wmspca(x,level,wname,npc);
```

Plot the result.

```
kp = 0;
for i = 1:4
    subplot(4,2,kp+1), plot(x(:,i)); axis tight;
    title(['Noisy signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight;
    title(['Second PCA ',num2str(i)])
    kp = kp + 2;
end
```


More About

Algorithms

The multiscale principal components generalizes the usual PCA of a multivariate signal seen as a matrix by performing simultaneously a PCA on the matrices of details of different levels. In addition, a PCA is performed also on the coarser approximation coefficients matrix in the wavelet domain as well as on the final reconstructed matrix. By selecting conveniently the numbers of retained principal components, interesting simplified signals can be reconstructed.

References

Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), "Multivariate de-noising using wavelets and principal component analysis," Computational Statistics \& Data Analysis, 50, pp. 2381-2398.

Bakshi, B. (1998), "Multiscale PCA with application to MSPC monitoring," AIChE J., 44, pp. 1596-1610.

See Also

wmulden

Introduced in R2006b

wmulden

Wavelet multivariate de-noising

Syntax

[X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ... wmulden (X, LEVEL, WNAME,NPC_APP,NPC_FIN, TPTR, SORH)
[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP,...)
$[\ldots]=$ wmulden(DEC,NPC_APP)
[...] = wmulden(X,LEVEL'WNAME,'mode',EXTMODE,NPC_APP)
[DEC,PCA_Params] = wmulden('estimate', DEC,NPC_APP, NPC_FIN)

Description

[X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ... wmulden (X, LEVEL, WNAME, NPC_APP, $\bar{N} P C$ _FIN, TPTR \bar{R}, SORH $)$ or [...] = wmulden(X,LEVEL,WNAME, 'mode' 'EXTMODE,NPC_APP, ...) returns a denoised version X_DEN of the input matrix X. The strategy combines univariate wavelet de-noising in the basis where the estimated noise covariance matrix is diagonal with noncentered Principal Component Analysis (PCA) on approximations in the wavelet domain or with final PCA.

The input matrix X contains P signals of length N stored columnwise where $\mathrm{N}>\mathrm{P}$.

Wavelet Decomposition Parameters

The wavelet decomposition is performed using the decomposition level LEVEL and the wavelet WNAME.

EXTMODE is the extended mode for the DWT (See dwtmode).
If a decomposition DEC obtained using mdwtdec is available, you can use
[...] = wmulden(DEC,NPC_APP) instead of

```
[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP).
```


Principal Components Parameters: NPC_APP and NPC_FIN

The input selection methods NPC_APP and NPC_FIN define the way to select principal components for approximations at level LEVEL in the wavelet domain and for final PCA after wavelet reconstruction, respectively.

If NPC_APP (or NPC_FIN) is an integer, it contains the number of retained principal components for approximations at level LEVEL (or for final PCA after wavelet reconstruction).

NPC_XXX must be such that $0<=$ NPC_XXX $<=P$
NPC_APP or NPC_FIN = 'kais' or 'heur' selects the number of retained principal components using Kaiser's rule or the heuristic rule automatically.

- Kaiser's rule keeps the components associated with eigenvalues greater than the mean of all eigenvalues.
- The heuristic rule keeps the components associated with eigenvalues greater than 0.05 times the sum of all eigenvalues.

NPC_APP or NPC_FIN = 'none' is equivalent to NPC_APP or NPC_FIN = P.

De-noising Parameters: TPTR and SORH

The default values for the de-noising parameters TPTR and SORH are:

```
TPTR = 'sqtwolog' and SORH = 's'
```

- Valid values for TPTR are

```
'rigsure', 'heursure', 'sqtwolog', 'minimaxi',
'penalhi', 'penalme', 'penallo'
```

- Valid values for SORH are:

```
's' (soft) or 'h' (hard)
```

For additional information, see wden and wbmpen.

Output Parameters

X_DEN is a de-noised version of the input matrix X.
NPC is the vector of selected numbers of retained principal components.
NESTCOV is the estimated noise covariance matrix obtained using the minimum covariance determinant (MCD) estimator.

DEC_DEN is the wavelet decomposition of X_DEN.
PCA_Params is a structure such that:
PCA_Params.NEST $=$ \{pc_NEST, var_NEST, NESTCOV $\}$
PCA_Params.APP = \{pc_APP,var_APP,npc_APP $\}$
PCA_Params.FIN = \{pc_FIN,var_FIN, npc_FIN $\}$
where:

- pc_XXX is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.

- var_XXX is the principal component variances vector.
- NESTCOV is the covariance matrix estimate for detail at level 1.

DEN_Params is a structure such that:

- DEN_Params.thrVAL is a vector of length LEVEL which contains the threshold values for each level.
- DEN_Params.thrMETH is a character vector containing the name of the de-noising method (TPTR).
- DEN_Params.thrTYPE is a character variable containing the type of the thresholding (SORH).

Special Cases

[DEC, PCA_Params] = wmulden('estimate',DEC,NPC_APP,NPC_FIN) returns the wavelet decomposition DEC and the Principal Components Estimates PCA_Params.
[X_DEN,NPC,DEC_DEN,PCA_Params] = wmulden('execute',DEC,PC_Params) uses the principal components estimates PCA_Params previously compute \bar{d}.

The input value DEC can be replaced by X, LEVEL, and WNAME.

Examples

\% Load a multivariate signal x together with \% the original signals (x_orig) and true noise \% covariance matrix (covar).
load ex4mwden
\% Set the de-noising method parameters.
level = 5;
wname = 'sym4';
tptr = 'sqtwolog';
sorh = 's';
\% Set the PCA parameters to select the number of
\% retained principal components automatically by
\% Kaiser's rule.
npc_app = 'kais';
npc_fin = 'kais';
\% Perform multivariate de-noising.
[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ... npc_fin, tptr, sorh);
\% Display the original and de-noised signals.
kp $=0$;
for $i=1: 4$
subplot(4,3,kp+1), plot(x_orig(:,i));
title(['Original signal ',num2str(i)])
subplot (4,3,kp+2), plot(x(:,i));
title(['Observed signal ',num2str(i)])
subplot(4,3,kp+3), plot(x_den(:,i));
title(['De-noised signal ', num2str(i)])
$\mathrm{kp}=\mathrm{kp}+3$;
end

Orignal signal 1
 Crignal signal 2

Observed signal 1

2004006008001000
Observed signal 2

De-noised signal 1
 De-nolsed signal 2

\% The results are good: the first function, which is \% irregular, is correctly recovered while the second
\% function, more regular, is well de-noised.
\% The second output argument gives the numbers
\% of retained principal components for PCA for
\% approximations and for final PCA.
npc
$\mathrm{npc}=$

$$
2 \quad 2
$$

\% The third output argument contains the estimated
\% noise covariance matrix using the MCD based
$\%$ on the matrix of finest details.
nestco

```
nestco =
\begin{tabular}{llll}
1.0784 & 0.8333 & 0.6878 & 0.8141 \\
0.8333 & 1.0025 & 0.5275 & 0.6814 \\
0.6878 & 0.5275 & 1.0501 & 0.7734 \\
0.8141 & 0.6814 & 0.7734 & 1.0967
\end{tabular}
% The estimation is satisfactory since the values are close
% to the true values given by covar.
covar
covar =
\begin{tabular}{llll}
1.0000 & 0.8000 & 0.6000 & 0.7000 \\
0.8000 & 1.0000 & 0.5000 & 0.6000 \\
0.6000 & 0.5000 & 1.0000 & 0.7000 \\
0.7000 & 0.6000 & 0.7000 & 1.0000
\end{tabular}
```


More About

Algorithms

The multivariate de-noising procedure is a generalization of the one-dimensional strategy. It combines univariate wavelet de-noising in the basis where the estimated noise covariance matrix is diagonal and non-centered Principal Component Analysis (PCA) on approximations in the wavelet domain or with final PCA.

The robust estimate of the noise covariance matrix given by the minimum covariance determinant estimator based on the matrix of finest details.

References

Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), "Multivariate de-noising using wavelets and principal component analysis," Computational Statistics \& Data Analysis, 50, pp. 2381-2398.

Rousseeuw, P.; Van Driessen, K. (1999), "A fast algorithm for the minimum covariance determinant estimator," Technometrics, 41, pp. 212-223.

See Also
wmspca
Introduced in R2006b

wnoise

Noisy wavelet test data

Syntax

```
X = wnoise(FUN,N)
[X,XN] = wnoise(FUN,N,SQRT_SNR)
[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT)
```


Description

$X=$ wnoise (FUN , N) returns values of the test signal given by FUN, on a 2^{N} grid of $[0,1]$.
[X,XN] = wnoise(FUN,N, SQRT_SNR) returns a test vector X as above, rescaled such that std $(X)=$ SQRT_SNR. The returned vector XN contains the same test vector corrupted by additive Gaussian white noise $N(0,1)$. Then, XN has a signal-to-noise ratio of SNR $=(\text { SQRT_SNR })^{2}$.
[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT) returns previous vectors X and XN , but the generator seed is set to INIT value.

The six functions below are due to Donoho and Johnstone (See "References").

FUN $=1$ or	'blocks '
FUN $=2$ or	'bumps '
FUN $=3$ or	'heavy sine'
FUN $=4$ or	'doppler'
FUN $=5$ or	'quadchirp '
FUN $=6$ or	'mishmash'

Examples

```
% Generate 2^10 samples of 'Heavy sine' (item 3).
x = wnoise(3,10);
```

```
% Generate 2^10 samples of 'Doppler' (item 4) and of
% noisy 'Doppler' with a square root of signal-to-noise
% ratio equal to 7.
[x,noisyx] = wnoise(4,10,7);
% To introduce your own rand seed, a fourth
% argument is allowed:
init = 2055415866;
[x,noisyx] = wnoise(4,10,7,init);
% Plot all the test functions.
ind = linspace(0,1,2^10);
for i = 1:6
    x = wnoise(i,10);
    subplot(6,1,i), plot(ind,x)
end
% Editing some graphical properties,
% the following figure is generated.
```


References

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone (1995), "Adapting to unknown smoothness via wavelet shrinkage via wavelet shrinkage," JASA, vol. 90, 432, pp. 1200-1224.

See Also

wden

Introduced before R2006a

wnoisest

Estimate noise of 1-D wavelet coefficients

Syntax

```
STDC = wnoisest(C,L,S)
STDC = wnoisest(C)
STDC = wnoisest(C)
```


Description

STDC $=$ wnoisest (C, L, S) returns estimates of the detail coefficients' standard deviation for levels contained in the input vector S. [C,L] is the input wavelet decomposition structure (see wavedec for more information).

If C is a one dimensional cell array, STDC $=$ wnoisest (C) returns a vector such that $\operatorname{STDC}(k)$ is an estimate of the standard deviation of $C\{k\}$.

If C is a numeric array, STDC $=$ wnoisest (C) returns a vector such that $\operatorname{STDC}(k)$ is an estimate of the standard deviation of $C(k,:)$.

The estimator used is Median Absolute Deviation / 0.6745, well suited for zero mean Gaussian white noise in the de-noising one-dimensional model (see thselect for more information).

Examples

Estimate Noise Standard Deviation in The Presence of Outliers

Estimate of the noise standard deviation in an $\mathrm{N}(0,1)$ white Gaussian noise vector with outliers.

Create an $\mathrm{N}(0,1)$ noise vector with 10 randomly-placed outliers.
rng default;
$x=\operatorname{randn}(1000,1)$;

```
P = randperm(length(x));
indices = P(1:10);
x(indices(1:5)) = 10;
x(indices(6:end)) = -10;
```

Obtain the discrete wavelet transform down to level 2 using the Daubechies' extremal phase wavelet with 3 vanishing moments.

```
[c,l] = wavedec(x,2,'db3');
stdc = wnoisest(c,l,1:2)
stdc =
    0.9559 1.0556
```

In spite of the outliers, wnoisest provides a robust estimate of the standard deviation.

References

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone (1995), "Adapting to unknown smoothness via wavelet shrinkage via wavelet shrinkage," JASA, vol 90, 432, pp. 1200-1224.

See Also
thselect | wden | wavedec
Introduced before R2006a

wp2wtree

Extract wavelet tree from wavelet packet tree

Syntax

```
T = wp2wtree(T)
```


Description

wp2wtree is a one- or two-dimensional wavelet packet analysis function.
$\mathrm{T}=$ wp2wtree (T) computes the modified wavelet packet tree T corresponding to the wavelet decomposition tree.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load signal.
load noisdopp; x = noisdopp;
\% Decompose x at depth 3 with db1 wavelet packets
\% using shannon entropy.
wpt $=$ wpdec(x,3,'db1');
\% Plot wavelet packet tree wpt. plot(wpt)

\% Compute wavelet tree.
wt $=$ wp2wtree(wpt) ;
\% Plot wavelet tree wt.
plot(wt)

See Also

wpdec | wpdec2

Introduced before R2006a

wpbmpen

Penalized threshold for wavelet packet de-noising

Syntax

THR = wpbmpen(T,SIGMA, ALPHA)
wpbmpen($\mathrm{T}, \mathrm{SIGMA}$, ALPHA, ARG)

Description

THR $=$ wpbmpen (T, SIGMA, ALPHA $)$ returns a global threshold THR for de-noising. THR is obtained by a wavelet packet coefficients selection rule using a penalization method provided by Birge-Massart.

T is a wavelet packet tree corresponding to the wavelet packet decomposition of the signal or image to be de-noised.

SIGMA is the standard deviation of the zero mean Gaussian white noise in the de-noising model (see wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a real number greater than 1. The sparsity of the wavelet packet representation of the de-noised signal or image grows with ALPHA. Typically ALPHA $=2$.

THR minimizes the penalized criterion given by
let t^{*} be the minimizer of
$\operatorname{crit}(\mathrm{t})=-\operatorname{sum}\left(\mathrm{c}(\mathrm{k})^{\wedge} 2, \mathrm{k} \leq \mathrm{t}\right)+2 *$ SIGMA^2*t*(ALPHA $\left.+\log (\mathrm{n} / \mathrm{t})\right)$
where $c(k)$ are the wavelet packet coefficients sorted in decreasing order of their absolute value and n is the number of coefficients, then $\mathrm{THR}=\left|\mathrm{c}\left(\mathrm{t}^{*}\right)\right|$.
wpbmpen(T, SIGMA, ALPHA, ARG) computes the global threshold and, in addition, plots three curves:

- 2*SIGMA^2*t*(ALPHA + log(n/t))
- $\operatorname{sum}\left(c(k)^{\wedge} 2, k £ t\right)$
- crit(t)

Examples

```
% Example 1: Signal de-noising.
% Load noisy chirp signal.
load noischir; x = noischir;
% Perform a wavelet packet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
tree = wpdec(x,lev,wname);
% Estimate the noise standard deviation from the
% detail coefficients at level 1,
% corresponding to the node index 2.
det1 = wpcoef(tree,2);
sigma = median(abs(det1))/0.6745;
% Use wpbmpen for selecting global threshold
% for signal de-noising, using the recommended parameter.
alpha = 2;
thr = wpbmpen(tree,sigma,alpha)
thr =
    4.5740
```

\% Use wpdencmp for de-noising the signal using the above
\% threshold with soft thresholding and keeping the
\% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr, keepapp);
\% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x),
title('Original signal')
subplot(212), plot(xd)
title('De-noised signal')

```
Original signal
```



```
\% Example 2: Image de-noising.
\% Load original image.
load noiswom;
nbc \(=\) size(map,1);
\% Perform a wavelet packet decomposition of the image
\% at level 3 using coif2.
wname = 'coif2'; lev = 3;
tree \(=\operatorname{wpdec} 2(X, l e v\), wname \() ;\)
\% Estimate the noise standard deviation from the
\% detail coefficients at level 1.
det1 = [wpcoef(tree,2) wpcoef(tree,3) wpcoef(tree,4)];
sigma \(=\) median(abs(det1(:)))/0.6745;
\% Use wpbmpen for selecting global threshold
\% for image de-noising.
alpha = 1.1;
thr \(=\) wpbmpen(tree,sigma,alpha)
thr \(=\)
38.5125
```

```
% Use wpdencmp for de-noising the image using the above
% thresholds with soft thresholding and keeping the
% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);
% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')
```

Original image

De-noised image

See Also

wbmpen | wden | wdencmp | wpdencmp

Introduced before R2006a

wpcoef

Wavelet packet coefficients

Syntax

```
X = wpcoef(T,N)
```

$\mathrm{X}=\operatorname{wpcoef}(T)$

Description

wpcoef is a one- or two-dimensional wavelet packet analysis function.
$\mathrm{X}=\operatorname{wpcoef}(T, \mathrm{~N})$ returns the coefficients associated with the node N of the wavelet packet tree T. If N doesn't exist, $\mathrm{X}=[$];
$\mathrm{X}=\operatorname{wpcoef}(T)$ is equivalent to $\mathrm{X}=\operatorname{wpcoef}(T, 0)$.

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp; x = noisdopp;
figure(1); subplot(211);
plot(x); title('Original signal');
% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1');
% Plot wavelet packet tree wpt.
plot(wpt)
```


\% Read packet $(2,1)$ coefficients.
cfs = wpcoef(wpt,[2 1]);
figure(1); subplot(212);
plot(cfs); title('Packet (2,1) coefficients');

More About

- "Reconstructing a Signal Approximation from a Node"

See Also
wpcoef | wpdec | wpdec2 | wprcoef
Introduced before R2006a

wpcutree

Cut wavelet packet tree

Syntax

```
T = wpcutree(T,L)
T
[T,RN] = wpcutree(T,L)
```


Description

wpcutree is a one- or two-dimensional wavelet packet analysis function.
$\mathrm{T}=$ wpcutree $(T, \mathrm{~L})$ cuts the tree T at level L .
[$\mathrm{T}, \mathrm{RN}]=$ wpcutree $(T, \mathrm{~L})$ returns the same arguments as above and, in addition, the vector RN contains the indices of the reconstructed nodes.

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp; x = noisdopp;
% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1');
% Plot wavelet packet tree wpt.
plot(wpt)
```


\% Cut wavelet packet tree at level 2. nwpt = wpcutree(wpt,2);
\% Plot new wavelet packet tree nwpt. plot (nwpt)

See Also
wpdec | wpdec2

Introduced before R2006a

wpdec

Wavelet packet decomposition 1-D

Syntax

```
T = wpdec(X,N,'wname',E,P)
T = wpdec(X,N,'wname')
T = wpdec(X,N,'wname','shannon')
T
```


Description

wpdec is a one-dimensional wavelet packet analysis function.
T = wpdec (X,N,'wname', E, P) returns a wavelet packet tree T corresponding to the wavelet packet decomposition of the vector X at level N , with a particular wavelet ('wname', see wfilters for more information).

T = wpdec (X,N,'wname') is equivalent to $T=\operatorname{wpdec}(X, N, ' w n a m e ', ' s h a n n o n ')$.
E is a character vector containing the type of entropy and P is an optional parameter depending on the value of T (see wentropy for more information).

Entropy Type Name (E)	Parameter (P)	Comments
' shannon '		P is not used.
' log energy'		P is not used.
'threshold '	$0 \leq \mathrm{P}$	P is the threshold.
'sure'	$0 \leq \mathrm{P}$	P is the threshold.
'norm'	$1 \leq \mathrm{P}$	P is the power.
' user'	character vector	P is a character vector containing the file name of your own entropy function, with a single input X.

Entropy Type Name (E)	Parameter (P)	Comments
FunName	No constraints on P	FunName is any other character vector except those used for the previous Entropy Type Names listed above. FunName contains the file name of your own entropy function, with X as input and P as additional parameter to your entropy function.

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last option described in the table above. The FunName option do the same as the ' user ' option and in addition gives the possibility to pass a parameter to your own entropy function.

The wavelet packet method is a generalization of wavelet decomposition that offers a richer signal analysis. Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters: position and scale as in wavelet decomposition, and frequency.

For a given orthogonal wavelet function, a library of wavelet packets bases is generated. Each of these bases offers a particular way of coding signals, preserving global energy and reconstructing exact features. The wavelet packets can then be used for numerous expansions of a given signal.

Simple and efficient algorithms exist for both wavelet packets decomposition and optimal decomposition selection. Adaptive filtering algorithms with direct applications in optimal signal coding and data compression can then be produced.

In the orthogonal wavelet decomposition procedure, the generic step splits the approximation coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a vector of detail coefficients, both at a coarser scale. The information lost between two successive approximations is captured in the detail coefficients. The next step consists in splitting the new approximation coefficient vector; successive details are never re-analyzed.

In the corresponding wavelet packets situation, each detail coefficient vector is also decomposed into two parts using the same approach as in approximation vector splitting. This offers the richest analysis: the complete binary tree is produced in the onedimensional case or a quaternary tree in the two-dimensional case.

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp; x = noisdopp;
% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1','shannon');
% The result is the wavelet packet tree wpt.
% Plot wavelet packet tree (binary tree, or tree of order 2).
plot(wpt)
```


More About

Algorithms

The algorithm used for the wavelet packets decomposition follows the same line as the wavelet decomposition process (see dwt and wavedec for more information).

- "Build Wavelet Tree Objects"
- "Examples Using Wavelet Packet Tree Objects"
- "Objects in the Wavelet Toolbox Software"

References

Coifman, R.R.; M.V. Wickerhauser, (1992), "Entropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms and Applications, SIAM).

Wickerhauser, M.V. (1991), "INRIA lectures on wavelet packet algorithms," Proceedings ondelettes et paquets d'ondes, 17-21 June, Rocquencourt, France, pp. 31-99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software algorithms, A.K. Peters.

See Also
wavedec | waveinfo | wenergy | wpdec | wprec
Introduced before R2006a

wpdec2

Wavelet packet decomposition 2-D

Syntax

```
T = wpdec2(X,N,'wname',E,P)
T = wpdec2(X,N,'wname')
T = wpdec2(X,N,wnam,'shannon')
```


Description

wpdec2 is a two-dimensional wavelet packet analysis function.
T = wpdec2 (X,N, 'wname' E, P) returns a wavelet packet tree T corresponding to the wavelet packet decomposition of the matrix X , at level N , with a particular wavelet ('wname', see wfilters for more information).
$T=\operatorname{wpdec} 2(X, N, ' w n a m e ')$ is equivalent to $T=\operatorname{wpdec} 2\left(X, N, w n a m, ' s h a n n o n^{\prime}\right)$.
E is a character vector containing the type of entropy and P is an optional parameter depending on the value of T (see wentropy for more information).

Entropy Type Name (E)	Parameter (P)	Comments
' shannon'		P is not used.
'log energy '		P is not used.
'threshold'	$0 \leq \mathrm{P}$	P is the threshold.
'sure'	$0 \leq \mathrm{P}$	P is the threshold.
'norm'	$1 \leq \mathrm{P}$	P is the power.
' user'	Character vector	P is a character vector containing the file name of your own entropy function, with a single input X.
STR	No constraints on P	STR is any other character vector except those used for the previous Entropy Type Names listed above.

Entropy Type Name (E)	Parameter (P)	Comments
		STR contains the file name of your own entropy function, with X as input and P as additional parameter to your entropy function.

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last option described in the preceding table. The FunName option does the same as the 'user' option and in addition, allows you to pass a parameter to your own entropy function.

See wpdec for a more complete description of the wavelet packet decomposition.

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load image.
load tire
% X contains the loaded image.
% For an image the decomposition is performed using:
t = wpdec2(X,2,'db1');
% The default entropy is shannon.
% Plot wavelet packet tree
% (quarternary tree, or tree of order 4).
plot(t)
```


More About

Tips

When X represents an indexed image, X is an m-by- n matrix. When X represents a truecolor image, it is an m-by- n-by- 3 array, where each m-by- n matrix represents a red, green, or blue color plane concatenated along the third dimension.

For more information on image formats, see the image and imfinfo reference pages.

Algorithms

The algorithm used for the wavelet packets decomposition follows the same line as the wavelet decomposition process (see dwt2 and wavedec2 for more information).

- "Build Wavelet Tree Objects"
- "Examples Using Wavelet Packet Tree Objects"
- "Objects in the Wavelet Toolbox Software"

References

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms and Applications, SIAM).

Wickerhauser, M.V. (1991), "INRIA lectures on wavelet packet algorithms," Proceedings ondelettes et paquets d'ondes, 17-21 June, Rocquencourt, France, pp. 31-99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software Algorithms, A.K. Peters.

See Also
wavedec2 | waveinfo | wenergy | wpdec | wprec2
Introduced before R2006a

wpdencmp

De-noising or compression using wavelet packets

Syntax

```
[XD,TREED,PERFO,PERFL2] =
wpdencmp(X,SORH,N,'wname',CRIT,PAR,KEEPAPP)
[XD,TREED,PERFO,PERFL2] = wpdencmp(TREE,SORH,CRIT,PAR,KEEPAPP)
```


Description

wpdencmp is a one- or two-dimensional de-noising and compression oriented function.
wpdencmp performs a de-noising or compression process of a signal or an image, using wavelet packet. The ideas and the procedures for de-noising and compression using wavelet packet decomposition are the same as those used in the wavelets framework (see wden and wdencmp for more information).
[XD,TREED,PERFO,PERFL2] =
wpdencmp ($\mathrm{X}, \mathrm{SORH}, \mathrm{N}$, ' wname ' , CRIT, PAR , KEEPAPP) returns a de-noised or compressed version XD of input signal X (one- or two-dimensional) obtained by wavelet packets coefficients thresholding.

The additional output argument TREED is the wavelet packet best tree decomposition (see besttree for more information) of XD. PERFL2 and PERFO are L^{2} energy recovery and compression scores in percentages.

PERFL2 $=100$ * (vector-norm of WP-cfs of XD / vector-norm of WP-cfs of X^{2}.
If X is a one-dimensional signal and 'wname ' an orthogonal wavelet, PERFL2 is reduced to

$$
\frac{100\|X D\|^{2}}{\|X\|^{2}}
$$

SORH equal to 's' or ' h ' is for soft or hard thresholding (see wthresh for more information).

Wavelet packet decomposition is performed at level N and 'wname ' is a character vector containing the wavelet name. Best decomposition is performed using entropy criterion defined by character vector CRIT and parameter PAR (see wentropy for more information). Threshold parameter is also PAR. If KEEPAPP $=1$, approximation coefficients cannot be thresholded; otherwise, they can be.
[XD, TREED, PERF0, PERFL2] = wpdencmp(TREE, SORH, CRIT, PAR, KEEPAPP) has the same output arguments, using the same options as above, but obtained directly from the input wavelet packet tree decomposition TREE (see wpdec for more information) of the signal to be de-noised or compressed.

In addition if CRIT = 'nobest ' no optimization is done and the current decomposition is thresholded.

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load original signal.
load sumlichr; x = sumlichr;
% Use wpdencmp for signal compression.
% Find default values (see ddencmp).
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)
thr =
    0.5193
sorh =
h
keepapp =
        1
crit =
    threshold
% De-noise signal using global thresholding with
% threshold best basis.
```

```
[xc,wpt,perf0,perfl2] = ...
wpdencmp(x, sorh, 3, 'db2',crit,thr, keepapp);
% Using some plotting commands,
% the following figure is generated.
Original signal
```



```
Compressed Signal using Wavelet Packets
```



```
\% Load original image.
load sinsin
\% Generate noisy image.
x \(=\mathrm{X} / 18+\operatorname{randn}(\operatorname{size}(\mathrm{X}))\);
\% Use wpdencmp for image de-noising.
\% Find default values (see ddencmp).
[thr, sorh, keepapp,crit] = ddencmp('den', 'wp',x)
thr =
4.9685
sorh =
h
keepapp =
1
```

```
crit =
sure
% De-noise image using global thresholding with
% SURE best basis.
xd = wpdencmp(x,sorh,3,'sym4',crit,thr,keepapp);
% Using some plotting commands,
% the following figure is generated.
% Generate heavy sine and a noisy version of it.
init = 1000;
[xref,x] = wnoise(5,11,7,init);
% Use wpdencmp for signal de-noising.
n = length(x);
thr = sqrt(2* log(n* log(n)/log(2)));
xwpd = wpdencmp(x,'s',4,'sym4','sure',thr,1);
% Compare with wavelet-based de-noising result.
xwd = wden(x,'rigrsure','s','one',4,'sym4');
```


References

Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics, Lecture Notes in Statistics, 103, Springer Verlag.

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image compression through wavelet transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia," Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301-369.

```
See Also
besttree | ddencmp | wdencmp | wenergy | wpbmpen | wpdec | wpdec2 | wthresh
Introduced before R2006a
```


wpfun

Wavelet packet functions

Syntax

```
[WPWS,X] = wpfun('wname',NUM,PREC)
[WPWS,X] = wpfun('wname',NUM)
[WPWS,X] = wpfun('wname',NUM,7)
```


Description

wpfun is a wavelet packet analysis function.
[WPWS, X] = wpfun('wname', NUM, PREC) computes the wavelet packets for a wavelet 'wname ' (see wfilters for more information), on dyadic intervals of length $2^{- \text {PREC }}$.

PREC must be a positive integer. Output matrix WPWS contains the W functions of index from 0 to NUM, stored row-wise as [$W_{0} ; W_{i} ; \ldots ; W_{\text {NUM }}$]. Output vector X is the corresponding common X-grid vector.

```
[WPWS,X] = wpfun('wname',NUM) is equivalent to
```

[WPWS, X] = wpfun('wname',NUM,7).

The computation scheme for wavelet packets generation is easy when using an orthogonal wavelet. We start with the two filters of length $2 N$, denoted $h(n)$ and $g(n)$, corresponding to the wavelet.

Now by induction let us define the following sequence of functions ($\left.W_{n}(x), n=0,1,2, \ldots\right)$ by

$$
\begin{aligned}
& W_{2 n}(x)=\sqrt{2} \sum_{k=0, \ldots, 2 N-1} h(k) W_{n}(2 x-k) \\
& W_{2 n+1}(x)=\sqrt{2} \sum_{k=0, \ldots, 2 N-1} g(k) W_{n}(2 x-k)
\end{aligned}
$$

where $W_{0}(x)=\phi(x)$ is the scaling function and $W_{I}(x)=\Psi(x)$ is the wavelet function.

For example for the Haar wavelet we have

$$
N=1, h(0)=h(1)=\frac{1}{\sqrt{2}}
$$

and

$$
g(0)=-g(1)=\frac{1}{\sqrt{2}}
$$

The equations become

$$
W_{2 n}(x)=W_{n}(2 x)+W_{n}(2 x-1)
$$

and

$$
\left(W_{2 n+1}(x)=W_{n}(2 x)-W_{n}(2 x-1)\right)
$$

$W_{0}(x)=\phi(x)$ is the haar scaling function and $W_{1}(x)=\Psi(x)$ is the haar wavelet, both supported in $[0,1]$.

Then we can obtain $W_{2 n}$ by adding two $1 / 2$-scaled versions of W_{n} with distinct supports [$0,1 / 2$] and $[1 / 2,1]$, and obtain $W_{2 n+1}$ by subtracting the same versions of W_{n}.

Starting from more regular original wavelets, using a similar construction, we obtain smoothed versions of this system of W-functions, all with support in the interval [0 , $2 N-1$.

Examples

\% Compute the db2 Wn functions for $\mathrm{n}=0$ to 7, generating
\% the db2 wavelet packets.
[wp,x] = wpfun('db2', 7);
\% Using some plotting commands,
\% the following figure is generated.

References

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms and applications, SIAM).

Wickerhauser, M.V. (1991), "INRIA lectures on wavelet packet algorithms," Proceedings ondelettes et paquets d'ondes, 17-21 June, Rocquencourt, France, pp. 31-99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software algorithms, A.K. Peters.

See Also

wavefun | waveinfo

Introduced before R2006a

wpioin

Recompose wavelet packet

Syntax

```
T = wpjoin(T,N)
[T,X] = wpjoin(T,N)
T = wpjoin(T)
T = wpjoin(T,0)
[T,X] = wpjoin(T)
[T,X] = wpjoin(T,O)
```


Description

wpjoin is a one- or two-dimensional wavelet packet analysis function.
wpjoin updates the wavelet packet tree after the recomposition of a node.
The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$\mathrm{T}=$ wpjoin (T, N) returns the modified wavelet packet tree T corresponding to a recomposition of the node N .
$[\mathrm{T}, \mathrm{X}]=$ wpjoin $(T, \mathrm{~N})$ also returns the coefficients of the node.
$\mathrm{T}=\operatorname{wpjoin}(T)$ is equivalent to $\mathrm{T}=\operatorname{wpjoin}(T, 0)$.
$[\mathrm{T}, \mathrm{X}]=\operatorname{wpjoin}(T)$ is equivalent to $[\mathrm{T}, \mathrm{X}]=\operatorname{wpjoin}(T, 0)$.

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load signal.
load noisdopp; x = noisdopp;
\% Decompose x at depth 3 with db1 wavelet packets.
wpt $=$ wpdec (x, 3, 'db1');
\% Plot wavelet packet tree wpt. plot(wpt)


```
\% Recompose packet \((1,1)\) or 2
wpt = wpjoin(wpt,[11]);
\% Plot wavelet packet tree wpt.
plot(wpt)
```


See Also

wpdec | wpdec2 | wpsplt

Introduced before R2006a

wprcoef

Reconstruct wavelet packet coefficients

Syntax

```
X = wprcoef(T,N)
X = wprcoef(T)
X = wprcoef(T,0)
```


Description

wprcoef is a one- or two-dimensional wavelet packet analysis function.
$\mathrm{X}=\operatorname{wprcoef}(T, N)$ computes reconstructed coefficients of the node N of the wavelet packet tree T.
$\mathrm{X}=\operatorname{wprcoef}(T)$ is equivalent to $\mathrm{X}=\operatorname{wprcoef}(T, 0)$.

Examples

```
% The current extension mode is zero-padding (see dwtmode)
% Load signal.
load noisdopp; x = noisdopp;
figure(1); subplot(211);
plot(x); title('Original signal');
% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
t = wpdec(x,3,'db1','shannon');
% Plot wavelet packet tree.
plot(t)
```


\% Reconstruct packet $(2,1)$.
rcfs = wprcoef(t,[2 1]);
figure(1); subplot(212);
plot(rcfs); title('Reconstructed packet (2,1)');

More About

- "Reconstructing a Signal Approximation from a Node"

See Also

wpdec | wpdec2 | wprec | wprec2

Introduced before R2006a

wprec

Wavelet packet reconstruction 1-D

Syntax

$$
\mathrm{X}=\operatorname{wprec}(T)
$$

wprec (wpdec (X,'wname'))

Description

wprec is a one-dimensional wavelet packet analysis function.
$\mathrm{X}=\operatorname{wprec}(T)$ returns the reconstructed vector X corresponding to a wavelet packet tree T.
wprec is the inverse function of wpdec in the sense that the abstract statement wprec (wpdec (X, 'wname')) would give back X.

See Also
wpdec | wpdec2 | wpjoin | wprec2 | wpsplt
Introduced before R2006a

wprec2

Wavelet packet reconstruction 2-D

Syntax

```
X = wprec2(T)
wprec2(wpdec2(X,'wname'))
```


Description

wprec2 is a two-dimensional wavelet packet analysis function.
$\mathrm{X}=$ wprec2 (T) returns the reconstructed matrix X corresponding to a wavelet packet tree T.
wprec 2 is the inverse function of wpdec2 in the sense that the abstract statement wprec2(wpdec2(X, 'wname')) would give back X.

More About

Tips

If T is obtained from an indexed image analysis or a truecolor image analysis, X is an m -by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

See Also

wpdec | wpdec2 | wprec | wpjoin | wpsplt

Introduced before R2006a

wpspectrum

Wavelet packet spectrum

Syntax

```
[SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs)
```

[...] = wpspectrum(WPT,Fs,'plot')
[...,TNFO] = wpspectrum(...)

Description

[SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs) returns a matrix of wavelet packet spectrum estimates, SPEC, for the binary wavelet packet tree object, WPT. Fs is the sampling frequency in Hertz. SPEC is a 2^{J}-by- N matrix where J is the level of the wavelet packet transform and N is the length of the time series. TIMES is a 1 -by- N vector of times and FREQ is a 1 -by- 2^{J} vector of frequencies.
[...] = wpspectrum(WPT,Fs,'plot') displays the wavelet packet spectrum.
[...,TNFO] = wpspectrum(...) returns the terminal nodes of the wavelet packet tree in frequency order.

Input Arguments

WPT

WPT is a binary wavelet packet tree of class wptree.

Fs

Sampling frequency in Hertz as a scalar of class double.
Default: 1

plot

The character vector 'plot ' displays the wavelet packet spectrum. Enter 'plot' after Fs to produce a plot of the wavelet packet spectrum.

Output Arguments

SPEC

Wavelet packet spectrum. SPEC is a 2^{J}-by- N matrix where J is the level of the wavelet packet transform and N is the length of node 0 in the wavelet packet tree object.

The frequency spacing between the rows of SPEC is $F s / 2^{J+1}$.

TIMES

Time vector. TIMES is a vector of times in seconds equal in length to node 0 of the wavelet packet tree object. The time spacing between elements is $1 / F s$.

FREQ

Frequency vector. FREQ is a vector of frequencies of length 2^{J} where J is the level of the wavelet packet tree object. The frequency spacing in FREQ is $F s / 2^{J+1}$.

TNFO

Terminal nodes. TNFO is a vector of the terminal nodes of the wavelet packet tree object in frequency order.

Examples

Wavelet packet spectrum for signal consisting of two sinusoids with disjoint support:

```
fs = 500;
t = 0:1/fs:4;
y = sin(32*pi*t).*(t<2) + sin(128*pi*t).*(t>=2);
subplot(2,1,1);
plot(t,y);
axis tight
title('Analyzed Signal');
```

```
% Wavelet packet spectrum
level = 6;
wpt = wpdec(y,level,'sym6');
subplot(2,1,2);
[S,T,F] = wpspectrum(wpt,fs,'plot');
```

Wavelet packet spectrum of chirp:

```
fs = 1000;
t = 0:1/fs:2;
% create chirp signal
y = sin(256*pi*t.^2);
% Plot the analyzed signal
subplot(2,1,1);
plot(t,y);
axis tight
title('Analyzed Signal');
% Wavelet packet spectrum
level = 6;
wpt = wpdec(y,level,'sym8');
subplot(2,1,2);
[S,T,F] = wpspectrum(wpt,fs,'plot');
```


More About

Wavelet Packet Spectrum

The wavelet packet spectrum contains the absolute values of the coefficients from the frequency-ordered terminal nodes of the input binary wavelet packet tree. The terminal nodes provide the finest level of frequency resolution in the wavelet packet transform. If J denotes the level of the wavelet packet transform and $F s$ is the sampling frequency, the terminal nodes approximate bandpass filters of the form:

$$
\left[\frac{n F s}{2^{J+1}}, \frac{(n+1) F s}{2^{J+1}}\right) \quad n=0,1,2,3, \ldots 2^{J}-1
$$

At the terminal level of the wavelet packet tree, the transform divides the interval from 0 to the Nyquist frequency into bands of approximate width $\mathrm{Fs} / 2^{J+1}$.

Algorithms

wpspectrum computes the wavelet packet spectrum as follows:

- Extract the wavelet packet coefficients corresponding to the terminal nodes. Take the absolute value of the coefficients.
- Order the wavelet packet coefficients by frequency ordering.
- Determine the time extent on the original time axis corresponding to each wavelet packet coefficient. Repeat each wavelet packet coefficient to fill in the time gaps between neighboring wavelet packet coefficients and create a vector equal in length to node 0 of the wavelet packet tree object.
- "Wavelet Packet Spectrum"

References

Wickerhauser, M.V. Lectures on Wavelet Packet Algorithms, Technical Report, Washington University, Department of Mathematics, 1992.

See Also
otnodes | wpdec

Introduced in R2010b

wpsplt

Split (decompose) wavelet packet

Syntax

```
T = wpsplt(T,N)
[T,cA,cD] = wpsplt(T,N)
[T,cA,cH,cV,cD] = wpsplt(T,N)
```


Description

wpsplt is a one- or two-dimensional wavelet packet analysis function.
wpsplt updates the wavelet packet tree after the decomposition of a node.
$\mathrm{T}=\mathrm{wpspl}(\mathrm{T}, \mathrm{N})$ returns the modified wavelet packet tree T corresponding to the decomposition of the node N .

For a one-dimensional decomposition,
$[\mathrm{T}, \mathrm{cA}, \mathrm{cD}]=\operatorname{wpsplt}(T, \mathrm{~N})$ with $\mathrm{cA}=$ approximation and $\mathrm{cD}=$ detail of node N .
For a two-dimensional decomposition,
$[\mathrm{T}, \mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}]=\operatorname{wpsplt}(T, \mathrm{~N})$ with $\mathrm{cA}=$ approximation and $\mathrm{cH}, \mathrm{cV}, \mathrm{c}=$ horizontal, vertical, and diagonal details of node N .

Examples

\% The current extension mode is zero-padding (see dwtmode).
\% Load signal.
load noisdopp;
x = noisdopp;
\% Decompose x at depth 3 with db1 wavelet packets. wpt $=$ wpdec (x,3,'db1');

```
% Plot wavelet packet tree wpt.
plot(wpt)
```


\% Decompose packet $(3,0)$.
wpt = wpsplt(wpt,[30]);
\% or equivalently wpsplt(wpt,7).
\% Plot wavelet packet tree wpt. plot(wpt)

See Also

wavedec | wpdec | wavedec2 | wpdec2 | wpjoin

Introduced before R2006a

wpthcoef

Wavelet packet coefficients thresholding

Syntax

```
NT = wpthcoef(T,KEEPAPP,SORH,THR)
```


Description

wpthcoef is a one- or two-dimensional de-noising and compression utility.
NT = wpthcoef(T, KEEPAPP, SORH, THR) returns a new wavelet packet tree NT obtained from the wavelet packet tree T by coefficients thresholding.

If KEEPAPP = 1, approximation coefficients are not thresholded; otherwise, they can be thresholded.

If SORH = 's', soft thresholding is applied; if SORH = 'h', hard thresholding is applied (see wthresh for more information).

THR is the threshold value.

See Also
wpdec | wpdec2 | wpdencmp | wthresh
Introduced before R2006a

wptree

WPTREE constructor

Syntax

T = wptree(ORDER,DEPTH, X, WNAME,ENT_TYPE, PARAMETER)
T = wptree(ORDER,DEPTH,X,WNAME)
T = wptree (ORDER,DEPTH, X,WNAME,'shannon')
T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA)

Description

T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,PARAMETER) returns a complete wavelet packet tree T.

ORDER is an integer representing the order of the tree (the number of "children" of each non terminal node). ORDER must be equal to 2 or 4 .

If ORDER $=2, T$ is a WPTREE object corresponding to a wavelet packet decomposition of the vector (signal) X, at level DEPTH with a particular wavelet WNAME.

If ORDER $=4$, T is a WPTREE object corresponding to a wavelet packet decomposition of the matrix (image) X , at level DEPTH with a particular wavelet WNAME.

ENT_TYPE is a character vector containing the entropy type and ENT_PAR is an optional parameter used for entropy computation (see wentropy, wpdec, or wpdec2 for more information).

T = wptree(ORDER, DEPTH, X, WNAME) is equivalent to $\mathrm{T}=$
wptree(ORDER, DEPTH, X, WNAME, 'shannon')
With T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA) you may set a userdata field.

The function wptree returns a WPTREE object.
For more information on object fields, see the get function or type
help wptree/get
Class WPTREE (Parent class: DTREE)

Fields

'dtree'	DTREE parent object
'wavInfo'	Structure (wavelet information)
'entInfo'	Structure (entropy information)

The wavelet information structure, 'wavInfo', contains

'wavName'	Wavelet name
'Lo_D'	Low Decomposition filter
'Hi_D'	High Decomposition filter
'Lo_R'	Low Reconstruction filter
'Hi_R'	High Reconstruction filter

The entropy information structure, 'entInfo', contains

'entName'	Entropy name
'entPar'	Entropy parameter

Fields from the DTREE parent object:

'allNI'	All nodes information

'allNI ' is an array of size nbnode by 5 , which contains

ind	Index
size	Size of data
ent	Entropy
ento	Optimal entropy

Each line is built based on the following scheme:

Examples

\% Create a wavelet packet tree.
$x=r a n d(1,512)$;
t = wptree(2,3,x,'db3');
t = wpjoin(t,[4;5]);
\% Plot tree t4.
plot(t);
\% Click the node $(3,0)$, (see the plot function).

data for node: (7) or (3,0).

See Also

dtree | ntree

Introduced before R2006a

wpviewcf

Plot wavelet packets colored coefficients

Syntax

```
wpviewcf(T,CMODE)
wpviewcf(T,CMODE,NBCOL)
```


Description

wpviewcf(T, CMODE) plots the colored coefficients for the terminal nodes of the tree T.
T is a wavelet packet tree and CMODE is an integer, which represents the color mode. The color modes are listed in the table below.

Color Mode	Description
1	Frequency order - Global coloration - Absolute values
2	Frequency order - By level - Absolute values
3	Frequency order - Global coloration - Values
4	Frequency order - By level coloration - Values
5	Natural order - Global coloration - Absolute values
6	Natural order - By level - Absolute values
7	Natural order - Global coloration - Values
8	Natural order - By level coloration - Values

wpviewcf(T, CMODE, NBCOL) uses NBCOL colors.

Examples

```
% Create a wavelet packet tree.
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db1');
```

```
% Plot tree t.
% Click the node (3,0), (see the plot function)
plot(t);
```


\% Plot the colored wavelet packet coefficients. wpviewcf(t,1);

Frequency Order: Global +abs

See Also

wpdec

Introduced before R2006a

wrcoef

Reconstruct single branch from 1-D wavelet coefficients

Syntax

X = wrcoef('type', C, L, 'wname', N)
X = wrcoef('type', C,L,Lo_R,Hi_R,N)
X = wrcoef('type', C,L,'wname')
X = wrcoef('type', C,L,Lo_R,Hi_R)

Description

wrcoef reconstructs the coefficients of a one-dimensional signal, given a wavelet decomposition structure (C and L) and either a specified wavelet ('wname ', see wfilters for more information) or specified reconstruction filters (Lo_R and Hi_R).

X = wrcoef('type', C, L, 'wname', N) computes the vector of reconstructed coefficients, based on the wavelet decomposition structure [C,L] (see wavedec for more information), at level N . 'wname' is a character vector containing the wavelet name.

Argument 'type' determines whether approximation ('type' = 'a') or detail ('type' $=$ 'd') coefficients are reconstructed. When 'type' = 'a', N is allowed to be 0; otherwise, a strictly positive number N is required. Level N must be an integer such that $\mathrm{N} \leq$ length (L) - 2 .

X = wrcoef('type', C,L,Lo_R,Hi_R,N) computes coefficients as above, given the reconstruction filters you specify.

X = wrcoef('type', C,L,'wname') and X = wrcoef('type', C,L,Lo_R,Hi_R) reconstruct coefficients of maximum level $\mathrm{N}=$ length(L)-2.

Examples

\% The current extension mode is zero-padding (see dwtmode).

```
% Load a one-dimensional signal.
load sumsin; s = sumsin;
% Perform decomposition at level 5 of s using sym4.
[c,l] = wavedec(s,5,'sym4');
% Reconstruct approximation at level 5,
% from the wavelet decomposition structure [c,l].
a5 = wrcoef('a',c,l,'sym4',5);
% Using some plotting commands,
% the following figure is generated.
```

Original signal s.

See Also

appcoef | detcoef | wavedec

Introduced before R2006a

wrcoef2

Reconstruct single branch from 2-D wavelet coefficients

Syntax

```
X = wrcoef2('type',C,S,'wname',N)
X = wrcoef2('type',C,S,Lo_R,Hi_R,N)
X = wrcoef2('type',C,S,'wname')
X = wrcoef2('type',C,S,Lo_R,Hi_R)
```


Description

wrcoef2 is a two-dimensional wavelet analysis function. wrcoef2 reconstructs the coefficients of an image.

X = wrcoef2('type', C, S, 'wname' N) computes the matrix of reconstructed coefficients of level N , based on the wavelet decomposition structure [C,S] (see wavedec2 for more information).
'wname ' is a character vector containing the name of the wavelet (see wfilters for more information). If 'type' = 'a', approximation coefficients are reconstructed;
otherwise if 'type' = 'h' ('v' or 'd', respectively), horizontal (vertical or diagonal, respectively) detail coefficients are reconstructed.

Level N must be an integer such that $0 \leq N \leq \operatorname{size}(S, 1)-2$ if 'type' = 'a' and such that $1 \leq N \leq \operatorname{size}(S, 1)-2$ if 'type' $=$ 'h', 'v', or 'd'.

Instead of giving the wavelet name, you can give the filters.
For X = wrcoef2('type', C,S,Lo_R,Hi_R,N), Lo_R is the reconstruction low-pass filter and Hi R is the reconstruction high-pass filter.

```
X = wrcoef2('type',C,S,'wname') or X = wrcoef2('type',C,S,Lo_R,Hi_R)
reconstruct coefficients of maximum level N = size(S,1)-2.
```


Examples

\% The current extension mode is zero-padding (see dwtmode).

```
% Load an image.
load woman;
% X contains the loaded image.
% Perform decomposition at level 2
% of X using sym5.
[c,s] = wavedec2(X,2,'sym5');
% Reconstruct approximations at
% levels 1 and 2, from the wavelet
% decomposition structure [c,s].
a1 = wrcoef2('a',c,s,'sym5',1);
a2 = wrcoef2('a',c,s,'sym5',2);
% Reconstruct details at level 2,
% from the wavelet decomposition
% structure [c,s].
% 'h' is for horizontal,
% 'v' is for vertical,
% 'd' is for diagonal.
hd2 = wrcoef2('h',c,s,'sym5',2);
vd2 = wrcoef2('v',c,s,'sym5',2);
dd2 = wrcoef2('d',c,s,'sym5',2);
% All these images are of same size sX.
sX = size(X)
sX =
    256 256
sa1 = size(a1)
sa1 =
    256 256
shd2 = size(hd2)
shd2 =
    256 256
```


More About

Tips

If C and S are obtained from an indexed image analysis (respectively a truecolor image analysis) then X is an m-by- n matrix (respectively an m-by- n-by- 3 array).

For more information on image formats, see the reference pages of image and imfinfo functions.

```
See Also
appcoef2| detcoef2| wavedec2
```

Introduced before R2006a

wrev

Flip vector

Syntax

$$
Y=\operatorname{wrev}(X)
$$

Description

wrev is a general utility.
$Y=w r e v(X)$ reverses the vector X.

Examples

```
v = [1 2 3];
```

wrev(v)
wrev(v')

See Also

fliplr | flipud

Introduced before R2006a

write

Write values in WPTREE fields

Syntax

T = write(T, 'cfs', NODE, COEFS)
T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...)

Description

T = write(T, 'cfs' , NODE, COEFS) writes coefficients for the terminal node NODE.
T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...) writes coefficients CFS1, CFS2, ... for the terminal nodes N1, N2,

Caution The coefficients values must have the suitable size. You can use $\mathrm{S}=$ read(T,'sizes',NODE) or S = read(T,'sizes', [N1;N2; ...]) in order to get those sizes.

Examples

```
% Create a wavelet packet tree.
load noisdopp; x = noisdopp;
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);
% Plot tree t and click the node (0,0) (see the plot function).
plot(t);
```


\% Write values.
sNod $=$ read(t,'sizes',[4,5,7]);
cfs4 $=$ zeros(sNod(1,:));
cfs5 = zeros(sNod(2,:));
cfs7 $=$ zeros $(\operatorname{sNod}(3,:))$;

$\%$ Plot tree t and click the node $(0,0)$ (see the plot function). plot(t)

See Also
disp | get | read \| set
Introduced before R2006a

wscalogram

Scalogram for continuous wavelet transform

Compatibility

This function is no longer recommended. Use cwt instead.

Syntax

SC = wscalogram(TYPEPLOT,COEFS)
SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...)

Description

SC = wscalogram(TYPEPLOT,COEFS) computes the scalogram SC which represents the percentage of energy for each coefficient. COEFS is the matrix of the continuous wavelet coefficients (see cwt).

The scalogram is obtained by computing:
S = abs(coefs.*coefs); SC = 100*S./sum(S(:))
When TYPEPLOT is equal to 'image ', a scaled image of scalogram is displayed. When TYPEPLOT is equal to ' contour', a contour representation of scalogram is displayed. Otherwise, the scalogram is returned without plot representation.

SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...) allows you to modify some properties. The valid choices for PropName are:

'scales'	Scales used for the CWT.
'ydata'	Signal used for the CWT.
'xdata'	x values corresponding to the signal values.

```
'power ' Positive real value. Default value is zero.
If power > 0, coefficients are first normalized
```

```
coefs(k,:) = coefs(k,:)/(scales(k)^power)
```

coefs(k,:) = coefs(k,:)/(scales(k)^power)
and then the scalogram is computed as explained above.

```

\section*{Examples}
```

% Compute signal s
t = linspace(-1,1,512);
s = 1-abs(t);
% Plot signal s
figure;
plot(s), axis tight

```

Figure 2 \(\square\) - 回 File Edit View Insert Tools Desktop Window Help


\% Compute coefficients COEFS using cwt
COEFS \(=\) cwt(s,1:32,'cgau4');
\% Compute and plot the scalogram (image option) figure;
SC = wscalogram('image', COEFS);

```

% Compute and plot the scalogram (contour option)
figure;
SC = wscalogram('contour',COEFS);

```

Figure 1 \(\square\)
File Edit View Insert Tools Desktop Window Help \(v\)


Scalogram
Percentage of energy for each wavelet coefficient


\section*{See Also \\ cwt}

Introduced in R2008a

\section*{WSSt}

Wavelet synchrosqueezed transform

\section*{Syntax}
```

sst = wsst(x)
[sst,f] = wsst(x)
[___] = wsst(x,fs)
[___] = wsst(x,ts)
[___] = wsst(___,wav)
wsst(___)
[___] = wsst(___ ,Name,Value)

```

\section*{Description}
sst = wsst(x) returns the wavelet synchrosqueezed transform, sst, which you use to examine data in the time-frequency plane. The synchrosqueezed transform has reduced energy smearing when compared to the continuous wavelet transform. The input, X , must be a 1-D real-valued signal with at least four samples. wsst computes the synchrosqueezed transform using the analytic Morlet wavelet.
[sst,f] = wsst(x) returns a vector of frequencies, \(f\), in cycles per sample. The frequencies correspond to the rows of sst.
\(\qquad\) ] = wsst( \(x, f s\) ) computes the sychrosqueezed transform using the specified sampling frequency, fs , in Hz , to compute the synchrosqueezed transform. If you specify an f output, wsst returns the frequencies in Hz. You can use any previous combination of output values.
\(\qquad\) ] = wsst( \(\mathrm{x}, \mathrm{ts}\) ) uses a duration ts with a positive, scalar input, as the sampling interval. The duration can be in years, days, hours, minutes, or seconds. If you specify ts and the \(f\) output, wsst returns the frequencies in \(f\) in cycles per unit time, where the time unit is derived from specified duration.
[ ___ ] ] = wsst( \(\qquad\) , wav) uses the analytic wavelet specified by wav to compute the synchrosqueezed transform. Valid values are 'amor' and 'bump', which specify the analytic Morlet and bump wavelet, respectively.
wsst ( __ ) with no output arguments plots the synchrosqueezed transform as a function of time and frequency. If you do not specify a sampling frequency, fs, or interval, ts, the synchrosqueezed transform is plotted in cycles per sample. If you specify a sampling frequency, the synchrosqueezed transform is plotted in Hz . If you specify a sampling interval using a duration, the plot is in cycles per unit time. The time units are derived from the duration.
[ ] = wsst( \(\qquad\) , Name, Value) returns the synchrosqueezed transform with additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Synchrosqueezed Transform of Speech Signal}

Obtain the wavelet synchrosqueezed transform of a speech sample using default values.
```

load mtlb;
sst = wsst(mtlb);

```

\section*{Synchrosqueezed Transform and Reconstruction of Speech Signal}

Obtain the wavelet synchrosqueezed transform of a speech signal and compare the original and reconstructed signals.

Load the speech signal and obtain its synchrosqueezed transform.
```

load mtlb;
soundsc(mtlb);
dt = 1/Fs;
t = 0:dt:numel(mtlb)*dt-dt;
[sst,f] = wsst(mtlb);

```

Plot the synchroqueezed transform.
```

pcolor(t,f,abs(sst));
shading interp
xlabel('Seconds'); ylabel('Amplitude');
title('Synchrosqueezed Transform');

```


Obtain the inverse synchroqueezed transform and play the reconstructed speech signal.
```

xrec = iwsst(sst);

```
soundsc(xrec);

\section*{Synchrosqueezed Transform of Quadratic Chirp}

Obtain and plot the wavelet synchrosqueezed transform of a quadratic chirp. The chirp is sampled at 1000 Hz .
```

load quadchirp;

```
[sst,f] = wsst(quadchirp, 1000);
hp = pcolor(tquad,f,abs(sst));
hp.EdgeColor = 'none';
```

title('Wavelet Synchrosqueezed Transform');
xlabel('Time'); ylabel('Hz');

```


\section*{Synchrosqueezed Transform of Sunspot Data}

Obtain the wavelet synchrosqueezed transform of sunspot data using the default Morlet wavelet. Specify the sampling interval to be one year.
load sunspot.dat;
wsst(sunspot(:,2),years(1))


\section*{Synchrosqueezed Transform of Sunspot Data Using Bump Wavelet}

Obtain and plot the wavelet synchrosqueezed transform of sunspot data using the bump wavelet. Specify the sampling interval to be 1 for one sample per year.
load sunspot.dat;
wsst(sunspot(:,2),years(1),'bump')

- "Time-Frequency Reassignment and Mode Extraction with Synchrosqueezing"

\section*{Input Arguments}
x - Input signal
row or column vector of real values
Input signal, specified as a row or column vector. x must be a 1-D, real-valued signal with at least four samples.
fs - Sampling frequency
positive scalar

Sampling frequency, specified as a positive scalar.

\section*{ts - Sampling interval \\ duration with positive scalar input}

Sampling interval, also known as the sampling period, specified as a duration with positive scalar input. Valid durations are years, days, hours, seconds, and minutes. You cannot use calendar durations (caldays, calweeks, calmonths, calquarters, or calyears). You cannot specify both ts and fs.

Example: sst = wsst(x,hours(12))

\section*{wav - Analytic wavelet}
'amor' (default) | 'bump '
Analytic wavelet used to compute the synchrosqueezed transform, specified as 'amor' or ' bump '. These character vectors specify the analytic Morlet wavelet and bump wavelet, respectively.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: 'VoicesPerOctave',26

\section*{' VoicesPerOctave' - Number of voices per octave \\ 32 (default) | integer from 10 to 48}

Number of voices per octave to use in the synchrosqueezed transform, specified as the comma-separated pair consisting of 'VoicesPerOctave' and an integer from 10 to 48 . The product of the number of voices per octave and the number of octaves is the number of scales. The number of octaves depends on the size of the input \(x\) and is floor(log2(numel(x)))-1.

\section*{'ExtendSignal' - Extend input signal symmetrically false (default) | true}

Option to extend the input signal symmetrically, specified as the comma-separated pair consisting of 'ExtendSignal' and either false or true. Extending the signal
symmetrically can mitigate boundary effects. If you specify false, then the signal is not extended. If you specify true, then the signal is extended.

\section*{Output Arguments}

\section*{sst - Synchrosqueezed transform}
matrix
Synchrosqueezed transform, returned as a matrix. By default, the synchrosqueezed transform uses floor (log2 (numel(x)))-1 octaves, 32 voices per octave, and the analytic Morlet wavelet. sst is an \(N a\)-by- \(N\) matrix where \(N a\) is the number of scales, and \(N\) is the number of samples in x . The default number of scales is 32*(floor (log2(numel(x)))-1).
\(f\) - Frequencies
vector
Frequencies of the synchrosqueezed transform, returned as a vector. The frequencies correspond to the rows of the sst. If you do not specify fs or ts, the frequencies are in cycles per sample. If you specify fs , the frequencies are in Hz . If you specify ts , the frequencies are in cycles per unit time. The length of the frequency vector is the same as the number of sst rows. If you specify ts as the sampling interval, ts is used to compute the scale-to-frequency conversion for \(f\).

\section*{More About}
- "Wavelet Synchrosqueezing"

\section*{References}
[1] I. Daubechies, I., J. Lu, and H. T. Wu. "Synchrosqueezed Wavelet Transforms: an Empricial Mode Decomposition-like Tool", Applied and Computational Harmonic Analysis. Vol. 30(2), pp. 243-261.
[2] Thakur, G., E. Brevdo, N. S. Fučkar, and H. T. Wu. "The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications." Signal Processing. Vol. 93, pp. 1079-1094.
See Alsodays | duration | hours | iwsst | minutes | seconds | wsstridge | yearsIntroduced in R2016a

\section*{wsstridge}

Time-frequency ridges from wavelet synchrosqueezing

\section*{Syntax}
fridge = wsstridge(sst)
[fridge,iridge] = wsstridge(sst)
[___] = wsstridge(sst,penalty)
[___] = wsstridge( ,f)
[___ ] = wsstridge( ___, Name, Value)

\section*{Description}
fridge = wsstridge(sst) extracts the maximum energy time-frequency ridge in cycles per sample from the wavelet synchrosqueezed transform, sst. The sst input is the output of wsst. Each ridge is a separate signal mode.
[fridge,iridge] = wsstridge(sst) returns in iridge the row indices of sst. The row indices are the maximum time-frequency ridge at each sample. Use iridge to reconstruct the signal mode along a time-frequency ridge using iwsst.
[ ___ ] = wsstridge(sst, penalty) multiplies the squared distance between frequency bins by the penalty value. You can include any of the ouitput arguments from previous syntaxes.
\(\qquad\) ] = wsstridge( \(\qquad\) ,f) returns the maximum energy time-frequency ridge in cycles per unit time based on the \(f\) input frequency vector. \(f\) is the frequency output of wsst. The f input and fridge output have the same units.
[ ___ ]= wsstridge( ___ ,Name, Value) returns the time-frequency ridge with additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Extract Time-Frequency Ridge from Chirp Signal}

Obtain the wavelet synchrosqueezed transform of a quadratic chirp and extract the maximum time-frequency ridge, in fridge, and the associated row indices, in iridge.

Load the chirp signal and obtain its synchrosqueezed transform.
```

load quadchirp;
[sst,f] = wsst(quadchirp);

```

Extract the maximum time-frequency ridge.
```

[fridge,iridge] = wsstridge(sst);

```

Plot the synchrosqueezed transform.
```

pcolor(tquad,f,abs(sst))
shading interp
title('Synchrosqueezed Transform')

```


Overlay the plot of the maximum energy frequency ridge.
hold on
plot(tquad,fridge)
title('Synchrosqueezed Transform with Overlaid Ridge')


\section*{Extract Time-Frequency Ridge from Multicomponent Signal}

Extract the two highest energy modes from a multicomponent signal.
Obtain and plot the wavelet synchrosqueezed transform.
```

load multicompsig;
sig = sig1+sig2;
[sst,F] = wsst(sig,sampfreq);
contour(t,F,abs(sst));
xlabel('Time'); ylabel('Hz');
grid on;
title('Synchrosqueezed Transform of Two-Component Signal');

```


Using a penalty of 10 , extract the two highest energy modes and plot the result.
```

[fridge,iridge] = wsstridge(sst,10,F,'NumRidges',2);
hold on;
plot(t,fridge,'k','linewidth',2);

```

- "Time-Frequency Reassignment and Mode Extraction with Synchrosqueezing"

\section*{Input Arguments}
sst - Synchrosqueezed transform
matrix
Synchrosqueezed transform, specified as a matrix.

\section*{penalty - Frequency bins scaling penalty}

0 (default) | nonnegative scalar

Frequency bins scaling penalty, specified as a nonnegative scalar. This input penalizes changes in frequency by multiplying the penalty value by the squared distance between frequency bins. Use a penalty term when you extract multiple ridges, or when you have a single modulated component in additive noise. The penalty term prevents jumps in frequency that occur when the region of highest energy in the time-frequency plane changes abruptly.

\section*{f - Synschrosqueezed transform frequencies \\ vector}

Synchrosqueezed transform frequencies corresponding to the rows of the synchrosqueezed transform, which is the vector output of wsst. The number of elements in the frequency vector is equal to the number of rows in the sst input.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: 'NumRidges',3

\section*{' NumRidges ' - Number of highest energy time-frequency ridges \\ 1 (default) | positive integer}

Number of highest energy time-frequency ridges to extract, specified as the commaseparated pair consisting of 'NumRidges ' and a positive integer. If this integer is greater than 1 , wsstridge iteratively determines the maximum energy timefrequency ridge by removing the previously computed ridges and the default or specified 'NumFrequencyBins ' on either side of each ridge bin.

\section*{' NumFrequencyBins ' - Number of frequency bins to remove 4 (default) | positive integer}

Number of frequency bins to remove from synchrosqueezed transform sst when extracting multiple ridges, specified as the comma-separated pair consisting of 'NumFrequencyBins ' and a positive integer. This integer must be less than or equal to round(size(sst,1)/4). You can specify the nunber of frequency bins to remove only if you extract more than one ridge. After extracting the highest energy time-frequency ridge, wsstridge removes the sst values corresponding to the iridge indices at each
time step. The energy is removed along the time-frequency ridge extended on both sides of the iridge index by the specified number of frequency bins. If the index of the extended time-frequency ridge exceeds the number of frequency bins at any time step, wsstridge truncates the removal region at the first or last frequency bin. To specify 'NumFrequencyBins', you must specify 'NumRidges'.

\section*{Output Arguments}

\section*{fridge - Time-frequency ridge frequencies}
vector or matrix
Time-frequency ridge frequencies, returned as a vector or matrix. The frequencies correspond to the time-frequency ridge at each time step. fridge is an \(N\)-by-nr matrix where \(N\) is the number of time samples (columns) in sst and nr is the number of ridges. The first column of the matrix contains the frequencies for the maximum energy timefrequency ridge in sst. Subsequent columns contain the frequencies for the timefrequency ridges in decreasing energy order. By default, fridge contains frequencies in cycles per sample.

\section*{iridge - Time-frequency ridge indices}
vector or matrix
Time-frequency ridge row indices of sst, returned as a vector or matrix. The row indices in iridge correspond to the row index of the maximum time-frequency ridge for each sst column. iridge is an \(N\)-by-nr matrix where \(N\) is the number of time samples (columns) in sst, and \(n r\) is the number of ridges. The first column of the matrix contains the indices for the maximum energy time-frequency ridge in sst. Subsequent columns contain the indices for the time-frequency ridges in decreasing energy order.

\section*{More About}

\section*{Algorithms}
wsstridge uses a penalized forward-backward greedy algorithm to extract the maximum energy time-frequency ridges from the wavelet synchrosqueezed transform matrix. The algorithm finds the maximum time-frequency ridge by minimizing \(-\ln (E)\) at each time point, where \(E\) is the absolute value of the synchrosqueezed transform. The is equivalent to maximizing the value of \(E\). The algorithm optionally constrains jumps
in frequency with a penalty that is proportional to the square of the distance between frequency bins.

The following example illustrates the time-frequency ridge algorithm using a penalty that is 2 times the squared distance between frequency bins. This simple synchrosqueezed transform matrix has three frequency bins and three time steps. The second row represents a sine wave.

1 Obtain the complex matrix output, y, of the wavelet synchroqueezed transform using wsst. Compute the \((-\ln (|y|))\). Suppose you have this \((-\ln (|y|))\) matrix output,
\begin{tabular}{lll}
1 & 4 & 4 \\
2 & 2 & 2 \\
5 & 5 & 4
\end{tabular}

2 Update the value for the ( 1,2 ) element.
a Leave the values the at the first time point unaltered. Begin the algorithm with the \((1,2)\) element of the matrix, which presents the first frequency bin at the 2 nd time point. Penalize the values in the first column based on their distance from the \((1,2)\) element. Applying the penalty to the first column produces
```

original value + penalty(distance squared)

```
\(1+2(0 * 0)=1\)
\(2+2(1 * 1)=4\)
\(5+2(2 * 2)=13\)

14
\(4 \quad 2\)
135
The minimum value of the first column is 1 , which is in bin 1 .
b Add the minimum value in column 1 to the current bin value, 4. The updated value for \((1,2)\) becomes 5 , which came from bin 1 .
3 Update the values for the remaining elements in column 2.
Recompute the original column 1 values with the penalty factor using the same process as in Step 2a. Obtain the remaining second column values using the same process as in Step 2b. Repeat Step 2 for the third column. The final matrix is

\(\begin{array}{lll}2 & 4_{(2)} & 6_{(2)} \\ 5 & 7\end{array}\)
\(5 \quad 7_{(2)} \quad 8_{(2)}\)
The subscripts indicate the index of the bin in the previous column from which a value came.
4 Starting at the last column of the matrix, find the minimum value. Walk back in time through the matrix by going from the current bin to the origin of that bin at the previous time point. Keep track of the bin indices, which form the path composing the ridge. The algorithm smooths the transition by using the origin bin instead of the bin with the minimum value. For this example, the ridge indices are 2, 2, 2, which matches the energy path of the sine wave in row 2 of the matrix shown in Step 1.

5 If you are extracting multiple ridges, the algorithm removes the first ridge from the synchrosqueezed transform and repeats the process.
- "Wavelet Synchrosqueezing"

\section*{References}
[1] I. Daubechies, I., J. Lu, and H. T. Wu. "Synchrosqueezed Wavelet Transforms: an Empricial Mode Decomposition-like Tool", Applied and Computational Harmonic Analysis. Vol. 30(2), pp. 243-261.
[2] Thakur, G., E. Brevdo, N. S. Fučkar, and H. T. Wu. "The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications." Signal Processing. Vol. 93, pp. 1079-1094.

\section*{See Also}
iwsst | wsst

Introduced in R2016a

\section*{wtbo}

\section*{WTBO constructor}

\section*{Syntax}

OBJ = wtbo
OBJ = wtbo(USERDATA)

\section*{Description}

OBJ = wtbo returns a WTBO object. Any object in the Wavelet Toolbox software is parented by a WTBO object.

With OBJ = wtbo(USERDATA) you can set a userdata field.
Class WTBO (Parent class: none)

\section*{Fields}
\begin{tabular}{|l|l|}
\hline wtboInfo & \begin{tabular}{l} 
Object information (not used in the current version of the \\
toolbox)
\end{tabular} \\
\hline ud & Userdata field \\
\hline
\end{tabular}

\section*{Introduced before R2006a}

\section*{wtbxmngr}

Wavelet Toolbox manager

\section*{Syntax}
wtbxmngr(OPTION)
V = wtbxmngr('version')

\section*{Description}
wtbxmngr or wtbxmngr('version') displays the current version of Wavelet Toolbox software.
wtbxmngr(OPTION) sets a toolbox option. Available options are
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline 'LargeFonts ' & Sets the size of future-created figures to use large fonts. \\
\hline 'DefaultSize' & \begin{tabular}{l} 
Restores the default figure size for future- created \\
figures.
\end{tabular} \\
\hline 'FigRatio' & Returns the current figure ratio value. \\
\hline 'FigRatio' , ratio & \begin{tabular}{l} 
Changes the size of future-created figures by multiplying \\
the default size by the specified ratio, where ratio must \\
be between 0.75 and 1.25.
\end{tabular} \\
\hline
\end{tabular}
\(\mathrm{V}=\) wtbxmngr('version') saves the current version of the toolbox to variable V .

\section*{Examples}
```

wtbxmngr('version')
** Wavelet Toolbox Version: V3.1 **
**

```


Introduced before R2006a

\section*{wthcoef}

1-D wavelet coefficient thresholding

\section*{Syntax}
```

NC = wthcoef('d',C,L,N,P)
NC = wthcoef('d',C,L,N)
NC = wthcoef('a',C,L)
NC = wthcoef('t',C,L,N,T,SORH)

```

\section*{Description}
wthcoef thresholds wavelet coefficients for the denoising or compression of a 1-D signal.
\(N C=w t h c o e f(' d ', C, L, N, P)\) returns coefficients obtained from the wavelet decomposition structure [C,L] (see wavedec for more information), by rate compression defined in vectors \(N\) and \(P\). \(N\) contains the detail levels to be compressed and \(P\) the corresponding percentages of lower coefficients to be set to zero. \(N\) and \(P\) must be of same length. Vector \(N\) must be such that \(1 \leq N(i) \leq\) length ( \(L\) ) - 2 .
\(N C=\) wthcoef('d', C, L, N) returns coefficients obtained from [C,L] by setting all the coefficients of detail levels defined in N to zero.

NC = wthcoef('a', C,L) returns coefficients obtained by setting approximation coefficients to zero.
\(N C=w t h c o e f(' t ', C, L, N, T, S O R H)\) returns coefficients obtained from the wavelet decomposition structure [C,L] by soft (if SORH ='s') or hard (if SORH ='h') thresholding (see wthresh for more information) defined in vectors \(N\) and T. N contains the detail levels to be thresholded and T the corresponding thresholds. N and T must be of the same length.
[ NC, L] is the modified wavelet decomposition structure.

\author{
See Also \\ wavedec \| wthresh
}

Introduced before R2006a

\section*{wthcoef2}

Wavelet coefficient thresholding 2-D

\section*{Syntax}
```

NC = wthcoef2('type',C,S,N,T,SORH)
NC = wthcoef2('type',C,S,N)
NC = wthcoef2('a',C,S)
NC = wthcoef2('t',C,S,N,T,SORH)

```

\section*{Description}
wthcoef2 is a two-dimensional de-noising and compression oriented function.
For 'type' = 'h' ('v' or 'd'), NC = wthcoef2('type', C, S, N, T, SORH) returns the horizontal (vertical or diagonal, respectively) coefficients obtained from the wavelet decomposition structure [C, S] (see wavedec2 for more information), by soft (if SORH \(=\) 's') or hard (if SORH =' \(h\) ') thresholding defined in vectors \(N\) and \(T\). \(N\) contains the detail levels to be thresholded and T the corresponding thresholds. N and T must be of the same length. The vector \(N\) must be such that \(1 \leq N(i) \leq \operatorname{size}(S, 1)-2\).

For 'type' = 'h' ('v' or 'd'), NC = wthcoef2('type', C, S,N) returns the horizontal (vertical or diagonal, respectively) coefficients obtained from [C, S] by setting all the coefficients of detail levels defined in N to zero.

NC = wthcoef2('a', C, S) returns the coefficients obtained by setting approximation coefficients to zero.
\(N C=w t h c o e f 2(' t ', C, S, N, T, S O R H)\) returns the detail coefficients obtained from the wavelet decomposition structure [C, S] by soft (if SORH ='s') or hard (if SORH = ' \(h\) ') thresholding (see wthresh for more information) defined in vectors \(N\) and T. \(N\) contains the detail levels to be thresholded and \(T\) the corresponding thresholds which are applied in the three detail orientations. N and T must be of the same length.
[NC, S] is the modified wavelet decomposition structure.

\author{
See Also \\ wavedec2 \| wthresh \\ Introduced before R2006a
}

\section*{wthresh}

Soft or hard thresholding

\section*{Syntax}

Y = wthresh (X, SORH, T)
\(Y=\) wthresh \((X, ' s ', T)\)
\(Y=\) wthresh (X,'h', \(T\) )

\section*{Description}
\(Y=\) wthresh (X,SORH,T) returns the soft (if SORH = 's') or hard (if SORH = 'h') thresholding of the input vector or matrix \(X\). \(T\) is the threshold value.
\(\mathrm{Y}=\mathrm{wthresh}\left(\mathrm{X}, \mathrm{'s}^{\prime}, \mathrm{T}\right)\) returns \(Y=\operatorname{sign}(X) \cdot(|X|-T)_{+}\), soft thresholding is wavelet shrinkage \(\left((x)_{+}=0\right.\) if \(x<0 ;(x)_{+}=x\), if \(\left.x \geq 0\right)\).
\(\mathrm{Y}=\mathrm{wthresh}(\mathrm{X}, \mathrm{h} ', \mathrm{~T})\) returns \(Y=X \cdot 1_{(|X|>T)}\), hard thresholding is cruder.

\section*{Examples}
```

% Generate signal and set threshold.
y = linspace(-1,1,100);
thr = 0.4;
% Perform hard thresholding.
ythard = wthresh(y,'h',thr);
% Perform soft thresholding.
ytsoft = wthresh(y,'s',thr);
% Using some plotting commands,
% the following figure is generated.

```


\section*{See Also}
wden | wdencmp | wpdencmp

\section*{Introduced before R2006a}

\section*{wthrmngr}

Threshold settings manager

\section*{Syntax}

THR = wthrmngr(OPTION,METHOD,VARARGIN)

\section*{Description}

THR = wthrmngr(OPTION,METHOD, VARARGIN) returns a global threshold or level dependent thresholds depending on OPTION. The inputs, VARARGIN, depend on the OPTION and METHOD values.

This file returns the thresholds used throughout the Wavelet Toolbox software for denoising and compression tools (command line files or Wavelet Analyzer app tools).

Valid options for the METHOD parameter are listed in the table below.
\begin{tabular}{|l|l|}
\hline METHOD & Description \\
\hline 'scarcehi' & \begin{tabular}{l} 
See wdcbm or wdcbm2 when used with 'high ' predefined \\
value of parameter M.
\end{tabular} \\
\hline 'scarceme' & \begin{tabular}{l} 
See wdcbm or wdcbm2 when used with 'medium ' predefined \\
value of parameter M.
\end{tabular} \\
\hline 'scarcelo' & \begin{tabular}{l} 
See wdcbm or wdcbm2 when used with ' low ' predefined \\
value of parameter M.
\end{tabular} \\
\hline 'sqtwolog' & \begin{tabular}{l} 
See 'sqtwolog' option in thselect, and see also wden. \\
\hline 'sqtwologuwn ' \\
\hline \begin{tabular}{l} 
See 'sqtwolog' option in thselect, and see also wden \\
when used with 'sln' option.
\end{tabular} \\
\hline 'sqtwologswn' \\
\hline \begin{tabular}{l} 
See 'sqtwolog' option in thselect, and see also wden \\
when used with 'mln' option.
\end{tabular} \\
\hline 'rigsure' \\
\hline See 'rigsure ' option in thselect, and see also wden. \\
\hline 'minimaxi' \\
\hline
\end{tabular} \begin{tabular}{l} 
See 'heursure' option in thselect, and see also wden. \\
\hline
\end{tabular} \begin{tabular}{l} 
See 'minimaxi' option in thselect, and see also wden. \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|l|l|}
\hline METHOD & Description \\
\hline 'penalhi' & \begin{tabular}{l} 
See wbmpen or wpbmpen when used with 'high ' value of \\
parameter ALPHA.
\end{tabular} \\
\hline 'penalme' & \begin{tabular}{l} 
See wbmpen or wpbmpen when used with 'medium ' value of \\
parameter ALPHA.
\end{tabular} \\
\hline 'penallo' & \begin{tabular}{l} 
See wbmpen or wpbmpen when used with 'low ' value of \\
parameter ALPHA.
\end{tabular} \\
\hline 'rem_n0' & \begin{tabular}{l} 
This option returns a threshold close to 0. A typical THR \\
value is median (abs (coefficients) ).
\end{tabular} \\
\hline 'bal_sn' & \begin{tabular}{l} 
This option returns a threshold such that the percentages of \\
retained energy and number of zeros are the same.
\end{tabular} \\
\hline 'sqrtbal_sn' & \begin{tabular}{l} 
This option returns a threshold equal to the square root of \\
the value such that the percentages of retained energy and \\
number of zeros are the same.
\end{tabular} \\
\hline
\end{tabular}

\section*{Discrete Wavelet 1-D Options}

For 1-D wavelet transforms, the expansion coefficients are in the vector C and the lengths of the expansion coefficient vectors are stored in \(L\).

\section*{Compression using a global threshold.}

X is the signal to be compressed and [ \(\mathrm{C}, \mathrm{L}\) ] is the wavelet decomposition structure of the signal to be compressed.

THR = wthrmngr('dw1dcompGBL', 'rem_n0', X)
THR = wthrmngr('dw1dcompGBL','bal_sn', x )

\section*{Compression using level dependent thresholds.}

X is the signal to be compressed and [ \(\mathrm{C}, \mathrm{L}\) ] is the wavelet decomposition structure of the signal to be compressed.

ALFA is a sparsity parameter (see wdcbm for more information).
```

THR = wthrmngr('dw1dcompLVL','scarcehi',C,L,ALFA)
ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw1dcompLVL','scarceme',C,L,ALFA)
ALFA must be such that 1.5 < ALFA < 2.5

```
```

THR = wthrmngr('dw1dcompLVL','scarcelo',C,L,ALFA)
ALFA must be such that 1 < ALFA < 2

```

\section*{De-noising using level dependent thresholds.}
[C,L] is the wavelet decomposition structure of the signal to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).
```

THR = wthrmngr('dw1ddenoLVL','sqtwolog',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','rigrsure',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','heursure',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','minimaxi',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','penalhi',C,L,ALFA)
ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw1ddenoLVL','penalme',C,L,ALFA)
ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw1ddenoLVL','penallo',C,L,ALFA)
ALFA must be such that 1 < ALFA < 2

```

\section*{Discrete Stationary Wavelet 1-D Options}

De-noising using level dependent thresholds.
SWTDEC is the stationary wavelet decomposition structure of the signal to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).
```

THR = wthrmngr('sw1ddenoLVL',METHOD,SWTDEC,SCAL)
THR = wthrmngr('sw1ddenoLVL',METHOD,SWTDEC,ALFA)

```

The options for METHOD are the same as in the 'dw1ddenoLVL' case.

\section*{Discrete Wavelet 2-D Options}

For 2-D wavelet transforms, the expansion coefficients are in the vector \(C\) and the size of the coefficient matrices at each level is stored in S.

\section*{Compression using a global threshold.}

X is the image to be compressed and [ \(\mathrm{C}, \mathrm{S}\) ] is the wavelet decomposition structure of the image to be compressed.
```

THR = wthrmngr('dw2dcompGBL','rem_n0',X)
THR = wthrmngr('dw2dcompGBL','bal_sn',C,S)
THR = wthrmngr('dw2dcompGBL','sqrtbal_sn',C,S)

```

\section*{Compression using level dependent thresholds.}

X is the image to be compressed and [ \(\mathrm{C}, \mathrm{S}\) ] is the wavelet decomposition structure of the image to be compressed. ALFA is a sparsity parameter (see wdcbm2 for more information).
```

THR = wthrmngr('dw2dcompLVL','scarcehi',C,S,ALFA)
ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw2dcompLVL','scarceme',C,S,ALFA)
ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw2dcompLVL','scarcelo',C,S,ALFA)
ALFA must be such that 1 < ALFA < 2

```

\section*{De-noising using level dependent thresholds.}
[ \(C, S\) ] is the wavelet decomposition structure of the image to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).
```

THR = wthrmngr('dw2ddenoLVL','penalhi',C,S,ALFA)
ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw2ddenoLVL','penalme',C,S,ALFA)
ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw2ddenoLVL','penallo',C,S,ALFA)
ALFA must be such that 1 < ALFA < 2
THR = wthrmngr('dw2ddenoLVL','sqtwolog',C,S,SCAL)
THR = wthrmngr('dw2ddenoLVL','sqrtbal_sn',C,S)

```

\section*{Discrete Stationary Wavelet 2-D Options}

\section*{De-noising using level dependent thresholds.}

SWTDEC is the stationary wavelet decomposition structure of the image to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).

THR = wthrmngr('sw2ddenoLVL', METHOD, SWTDEC, SCAL)
THR = wthrmngr('sw2ddenoLVL', METHOD, SWTDEC, ALFA)
The options for METHOD are the same as in the 'dw2ddenoLVL' case.

\section*{Discrete Wavelet Packet 1-D Options}

\section*{Compression using a global threshold.}

X is the signal to be compressed and WPT is the wavelet packet decomposition structure of the signal to be compressed.
```

THR = wthrmngr('wp1dcompGBL','bal_sn',WPT)
THR = wthrmngr('wp1dcompGBL','rem_nO',X)

```

\section*{De-noising using a global threshold.}

WPT is the wavelet packet decomposition structure of the signal to be de-noised.
```

THR = wthrmngr('wp1ddenoGBL','sqtwologuwn',WPT)
THR = wthrmngr('wp1ddenoGBL','sqtwologswn',WPT)
THR = wthrmngr('wp1ddenoGBL','bal_sn',WPT)
THR = wthrmngr('wp1ddenoGBL','penalhi',WPT)
see wbmpen with ALFA = 6.25
THR = wthrmngr('wp1ddenoGBL','penalme',WPT)
see wbmpen with ALFA = 2
THR = wthrmngr('wp1ddenoGBL','penallo',WPT)
see wbmpen with ALFA = 1.5

```

\section*{Discrete Wavelet Packet 2-D Options}

\section*{Compression using a global threshold.}

X is the image to be compressed and WPT is the wavelet packet decomposition structure of the image to be compressed.
```

THR = wthrmngr('wp2dcompGBL','bal_sn',WPT)
THR = wthrmngr('wp2dcompGBL','rem_nO',X)
THR = wthrmngr('wp2dcompGBL','sqrtbal_sn',WPT)

```

\section*{De-noising using a global threshold.}

WPT is the wavelet packet decomposition structure of the image to be de-noised.
```

THR = wthrmngr('wp2ddenoGBL','sqtwologuwn',WPT)
THR = wthrmngr('wp2ddenoGBL','sqtwologswn',WPT)
THR = wthrmngr('wp2ddenoGBL','sqrtbal_sn',WPT)

```
```

THR = wthrmngr('wp2ddenoGBL','penalhi',WPT)
see wbmpen with ALFA = 6.25
THR = wthrmngr('wp2ddenoGBL','penalme',WPT)
see wbmpen with ALFA = 2
THR = wthrmngr('wp2ddenoGBL','penallo',WPT)
see wbmpen with ALFA = 1.5

```

\section*{Examples}

\section*{Level-Independent Threshold - Stationary Wavelet Transform}

This example uses a level-independent threshold based on the finest-scale wavelet coefficients to implement hard thresholding with the stationary wavelet transform.

Load the noisy blocks signal. Obtain the stationary wavelet transform down to level 5 using the Haar wavelet.
```

load noisbloc;
L = 5;
swc = swt(noisbloc,L,'db1');

```

Make a copy of the wavelet transform coefficients. Determine the Donoho-Johnstone universal threshold based on the first-level detail coefficients. Using the 'sln' option, wthrmngr returns a 1-by-L vector with every element equal to the same value. Take the mean of the vector to obtain a scalar threshold.
```

swcnew = swc;
ThreshSL = mean(wthrmngr('sw1ddenoLVL','sqtwolog',swc,'sln'));

```

Use the universal threshold to implement hard thresholding. The same threshold is applied to the wavelet coefficients at every level.
```

for jj = 1:L
swcnew(jj,:) = wthresh(swc(jj,:),'h',ThreshSL);
end

```

Invert the stationary wavelet transform on the thresholded coefficients, swcnew. Plot the original signal and the denoised signal for comparison.
```

noisbloc_denoised = iswt(swcnew,'db1');
plot(noisbloc); hold on;

```
```

 plot(noisbloc_denoised,'r','linewidth',2);
    ```


\section*{Level-Dependent Threshold - Stationary Wavelet Transform}

This example uses a level-dependent threshold derived from the wavelet coefficients at each scale to implement hard thresholding with the stationary wavelet transform.

Load the noisy blocks signal. Obtain the stationary wavelet transform down to level 5 using the Haar wavelet.
```

load noisbloc;
L = 5;
swc = swt(noisbloc,L,'db1');

```

Make a copy of the wavelet transform coefficients. Determine the Donoho-Johnstone universal threshold based on the detail coefficients for each scale. Using the 'mln' option, wthrmngr returns a 1-by-L vector with each element of the vector equal to the universal threshold for the corresponding scale.
```

swcnew = swc;
ThreshML = wthrmngr('sw1ddenoLVL','sqtwolog',swc,'mln');

```

Use the universal thresholds to implement hard thresholding. The thresholds are applied in a scale-dependent manner.
```

for jj = 1:L
swcnew(jj,:) = wthresh(swc(jj,:),'h',ThreshML(jj));
end

```

Invert the stationary wavelet transform on the thresholded coefficients, swcnew. Plot the original signal and the denoised signal for comparison.
```

noisbloc_denoised = iswt(swcnew,'db1');
plot(noisbloc); hold on;
plot(noisbloc_denoised,'r','linewidth',2);

```


\section*{Image Compression - Birgé-Massart Thresholds}

This example compresses an image using the Birgé-Massart strategy.
Load the image and add white Gaussian noise.
load sinsin
x = X+18*randn(size(X));
Obtain the 2-D discrete wavelet transform down to level 2 using the Daubechies' leastasymmetric wavelet with 8 vanishing moments. Obtain the compression thresholds using the Birgé-Massart strategy with alpha equal to 2 .
\([C, L]=\) wavedec2(x,2, 'sym8');
```

alpha = 2;
THR = wthrmngr('dw2dcompLVL','scarcehi',C,L,alpha);

```

Compress the image and display the result.
```

Xd = wdencmp('lvd',X,'sym8',2,THR,'s');
image(X); title('Original image');
figure;
image(x); title('Noisy image');
figure;
image(Xd); title('Denoised image');

```


\section*{Noisy image}



Introduced before R2006a

\section*{wtmm}

Wavelet transform modulus maxima

\section*{Syntax}
```

hexp = wtmm(x)
[hexp,tauq] = wtmm(x)
[___] = wtmm(x,'MinRegressionScale',scale)
[hexp,tauq,structfunc] = wtmm(

```
\(\qquad\)
``` )
```

```
[localhexp,wt,wavscales] = wtmm(x,'ScalingExponent','local')
```

[localhexp,wt,wavscales] = wtmm(x,'ScalingExponent','local')
wtmm(___,'ScalingExponent','local')

```
```

[___] = wtmm( ___,Name,Value)

```
```

[___] = wtmm( ___,Name,Value)

```

\section*{Description}
hexp \(=w \operatorname{tmm}(x)\) returns an estimate of the global Holder exponent, hexp, for the realvalued, 1-D input signal, \(x\). The global and local Holder exponents are estimated for the linearly-spaced moments of the structure functions from -2 to +2 in 0.1 increments.
[hexp,tauq] = wtmm(x) also returns an estimate of the partition function scaling exponents, tauq.
\(\qquad\)] = wtmm(x,'MinRegressionScale', scale) uses only scales greater than or equal to scale to estimate the global Holder exponent. This syntax can include any of the output arguments used in previous syntaxes.
[hexp, tauq, structfunc] = wtmm (__) also returns the multiresolution structure functions, structfunc, for the global Holder exponent estimate. This syntax can include any of the input arguments used in previous syntaxes.
[localhexp,wt,wavscales] = wtmm(x,'ScalingExponent','local') returns the local Holder exponent estimates, the continuous wavelet transform wt, and the scales, wavscales, which are used to calculate the CWT used in the wtmm algorithm. The wavelet used in the CWT is the second derivative of a Gaussian.
wtmm \(\qquad\) , 'ScalingExponent', 'local') with no output arguments plots the wavelet maxima lines in the current figure. Estimates of the local Holder exponents are displayed in a table to the right of the plot.
[] \(=\) wtmm (, Name, Value) returns the Holder exponent and other specified outputs with additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Global Holder Exponent for Brownian Motion}

Estimate the global Holder exponent for Brownian motion. This monofractal signal has a Holder exponent of approximately 0.5 .
```

rng(100);
x = cumsum(randn(2^15,1));
hexp = wtmm(x)
hexp =
0.5010

```

\section*{Linearity of Scaling Exponents for Monofractal Signal}

Confirm that for a monofractal signal, the scaling exponents are a linear function of the moments. For multifractal signals, the exponents are a nonlinear function of the moments.

Load a signal that contains two time series, each with 8000 samples. Ts1 is a multifractal signal and Ts2 is a monofractal fractional Brownian signal. Obtain the exponents using wtmm.
```

load RWdata;
[hexp1,tauq1] = wtmm(Ts1);
[hexp2,tauq2] = wtmm(Ts2);

```

Plot the scaling exponents.
```

expplot = plot(-2:0.1:2,tauq2,'b-o',-2:0.1:2,tauq1,'r-^');

```
```

        grid on;
        expplot(1).MarkerFaceColor = 'b';
        expplot(2).MarkerFaceColor = 'r';
        legend('Ts2-Monofractal','Ts1-Multifractal','Location','SouthEast');
        title('Monofractal vs. Multifractal Scaling Exponents');
        xlabel('Qth Moment');
        ylabel('Scaling Exponents');
    ```


Ts2, which is the monofractal signal, is a linear function. Ts1, the multifractal signal, is not linear.

\section*{Structure Function of Wavelet Transform Modulus Maxima}

Use the structure function output of wtmm to analyze a Brownian motion signal.

Create fractional Brownian motion with a Holder exponenet of 0.6.
```

Brn = wfbm(0.6,2^15);
[hexp,tauq,structfunc] = wtmm(Brn);

```

Compare the calculated Holder exponent with the theoretical value of 0.6.
hexp
```

hexp =

```
0.6090

Use the data in the structfunc output and the lscov function to perform the regression on the data.
```

x = ones(length(structfunc.logscales),2);
x(:,2) = structfunc.logscales;
betahat = lscov(x,structfunc.Tq,structfunc.weights);
betahat = betahat(2,:);

```

Plot and compare the scaling exponents from the tauq output and from the regressed structure function output.
```

subplot(1,2,1)
plot(-2:.1:2,tauq)
grid on
title('From tauq Output')
xlabel('Qth Moment')
ylabel('Scaling Exponents')
subplot(1,2,2)
plot(-2:.1:2,betahat(1:41))
grid on
title('From structfunc Output')
xlabel('Qth Moment')

```


The plots are the same and show a linear relationship between the moments and the exponents. Therefore, the signal is monofractal. The Holder exponent returned in hexp is the slope of this line.

\section*{Local Holder Exponents for Cusp Signal and Delta Functions}

Using a cusp signal and a signal containing delta functions, generate their local Holder exponents.

\section*{Cusp Signal}

Load and plot a cusp signal. Note the difference between the two cusps.
load cusp;
```

    plot(cusp)
    grid on
xlabel('Sample')
ylabel('Amplitude')

```


The equation for this cusp signal specifies a Holder exponent of 0.5 at sample 241 and a Holder exponent of 0.3 at sample 803.
\(-0.2^{*} \mathrm{abs}(x-241)^{\wedge} 0.5-0.5^{*} \mathrm{abs}(x-803)^{\wedge} 0.3+0.00346 * x+1.34\)
Obtain the local Holder exponents and plot the modulus maxima.
wtmm(cusp,'ScalingExponent','local');

The Holder exponents at samples 241 and 803 are very close to the values specified in the cusp signal equation. The higher Holder value at sample 241 indicates that the signal at that point is closer to being differentiable than the signal at sample 803, which has a smaller Holder value.

\section*{Delta Functions}

Create and plot two delta functions.
```

x = zeros(1e3,1);
x([200 500]) = 1;
plot(x)
grid on
xlabel('Sample')
ylabel('Amplitude')

```


Obtain the local Holder exponents using the default number of octaves, which in this case is 7. Plot the modulus maxima. A delta function has a Holder exponenent of \&ndash1.
```

wtmm(x,'ScalingExponent','local');

```


Obtain the local Holder exponents using 5 octaves and compare the modulus maxima plot to the plot using the default number of octaves.
```

wtmm(x,'ScalingExponent','local','Num0ctaves',5);

```

Reducing the number of scales provides more separation in frequency and less overlap between the modulus maxima lines of the delta functions.

\section*{Input Arguments}

\section*{x - Input signal}
real-valued vector
Input signal, specified as a real-valued vector with a minimum of 128 samples. The wavelet transform modulus maxima technique works best for data with 8000 or more samples.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.
Example: 'VoicesPerOctave' , 18 estimates the global Holder estimate using 18 voices per octave.
```

'MinRegressionScale' - Minimum scale for regression
4 (default)| scalar greater than or equal to 4

```

Minimum scale for regression, specified as the comma-separated pair consisting of 'MinRegressionScale' and a scalar greater than or equal to 4. This scale is the smallest scale used by the regression. There must be at least two scales with more than 6 CWT maxima. 'MinRegressionScale' applies only to global Holder exponents.

\author{
'VoicesPerOctave' - Number of voices per octave \\ 10 (default) | even integer from 8 to 32
}

Number of voices per octave, specified as the comma-separated pair consisting of 'VoicesPerOctave' and an even integer from 8 to 32 . The number of voices per octave and the number of octaves determine the number of scales used in the CWT.

\section*{'Num0ctaves ' - Number of octaves}
minimum of 7 and floor (log2(numel(x)/(3*sqrt(1.1666)))) (default) | integer greater than or equal to 4

Number of octaves, specified as the comma-separated pair consisting of 'NumOctaves' and an integer. The number of octaves and the number of voices per octave determine the number of scales used in the CWT. The maximum number of octaves is less than or equal to floor (log2 (numel (x)/(3*sqrt(1.1666)))). The sqrt(1.1666) factor is the standard deviation of the second derivative of a Gaussian wavelet. If you specify the number of octaves as greater than the maximum number of octaves, wtmm uses the maximum supported number of octaves.

\section*{'ScalingExponent' - Type of scaling exponents \\ 'global' (default) | 'local'}

Type of scaling exponents, specified as a comma-separated pair consisting of 'ScalingExponent' and either 'global' or 'local'. A global Holder exponent is used for monofractal signals, such as white noise, which are singular everywhere. Global holder exponents give a single estimate of degree of these singularities over the whole signal. Local Holder exponents are useful for signals with cusp singularities.

\section*{Output Arguments}

\section*{hexp - Global Holder exponent}
real scalar
Global Holder exponent, returned as a real scalar. Holder exponents are useful for identifying singularities, which are locations where a signal is not differentiable. A global Holder exponent uses a single value to estimate the degree of differentiability of all of the singularites of a signal. Signals with a global Holder exponent are monofractal signals.

\section*{tauq - Scaling exponents}
column vector
Scaling exponents, returned as a column vector. The exponents are estimated for the linearly-spaced moments of the structure functions from -2 to +2 in 0.1 increments.

\section*{structfunc - Multiresolution structure functions}
struct
Multiresolution structure functions for the global Holder exponent estimates, returned as a struct. The structure function for data \(x\) is defined as
\[
S(q, a)=\frac{1}{n_{a}} \sum_{k=1}^{n_{a}}\left|T_{x}(a, k)\right|^{q} \simeq a^{\zeta(q)},
\]
where \(a\) is the scale, \(q\) is the moment, \(T_{x}\) is the maxima at each scale, \(n_{a}\) is the number of maxima at each scale, and \(\zeta(q)\) is the scaling exponent. structfunc is a structure array containing the following fields:
- Tq - Measurements of the input, \(x\), at various scales. Tq is a matrix of multiresolution quantities that depend jointly on time and scale. Scaling phenomena in \(x\) imply a power-law relationship between the moments of Tq and the scale. Tq is an \(N s\)-by- 44 matrix, where \(N s\) is the number of scales. The first 41 columns of Tq contain the scaling exponent estimates for each of the \(q\) th from -2:0.1:2, by scale. The last three columns correspond to the first-order, second-order, and third-order cumulants, respectively, by scale. For a monofractal signal, cumulants greater than the first cumulant are zero.
- weights - Weights used in the regression estimates. The weights correspond to the number of wavelet maxima at each scale. weights is an Ns -by- 1 vector.
- logscales - Scales used as predictors in the regression. logscales is an Ns-by-1 vector with the base-2 logarithm of the scales.

\section*{localhexp - Local Holder exponent estimates}
array of real values
Local Holder exponent estimates, returned as an \(M\)-by-2 array of real values, where \(M\) is the number of maxima. If no maxima lines converge to the finest scale in the wavelet transform, then localhexp is an empty array. The wavelet transform modulus maxima method (WTMM) identifies cusp-like singularities in a signal. To analyze multifractal signals, use dwtleader.

\section*{wt - Continuous wavelet transform}
matrix
Continuous wavelet transform, returned as a matrix of real values. wt is a numel (wavscales) -by- \(N\) matrix where \(N\) is the length of the input signal x .

\section*{wavscales - Wavelet scales}
column vector
Wavelet scales, returned as a column vector of real values. wavscales are the scales used to calculate the CWT.

\section*{More About}

\section*{Algorithms}

The WTMM algorithm finds singularities in a signal by determining maxima. The algorithm first calculates the continuous wavelet transform using the second derivative of a Gaussian wavelet with 10 voices per octave. The wavelet that meets this criteria is the Mexican hat, or Ricker, wavelet. Then, the algorithm determines the modulus maxima for each scale. The WTMM is intended to be used with large data sets so that enough samples are available to determine maxima accurately.

The definition of the modulus maximum at point \(x_{0}\) and scale \(s_{0}\) is
\[
\left|W f\left(s_{0}, x\right)\right|<\left|W f\left(s_{0}, x_{0}\right)\right|
\]
where \(x\) is either in the right or left neighborhood of \(x_{0}\). When \(x\) is in the opposite neighborhood of \(x_{0}\), the definition is
\[
\left|W f\left(s_{0}, x\right)\right| \leq\left|W f\left(s_{0}, x_{0}\right)\right|
\]
. The algorithm for finding additional maxima repeats for values in that scale. Then, the algorithm continues up through finer scales, checking whether the maxima align between scales. If a maximum converges to the finest scale, it is a true maximum and indicates a singularity at that point.

When each singularity is determined, the algorithm then estimates its Holder exponent. Holder exponents indicate the degree of differentiability for each singularity, which classifies the singularity strength. A Holder exponent less than or equal to 0 indicates a discontinuity at that location. Holder exponents greater than or equal to 1 indicate that the signal is differentiable at that location. Holder values between 0 and 1 indicate continuous, but not differentiable locations. They indicate how close the signal at that sample is to being differentiable. Holder exponents close to 0 indicate signal locations that are less differentiable than locations with exponents closer to 1 . The signal is smoother at locations with higher local Holder exponents.

For signals with a few cusp-like singularites and Holder exponents that have large variation, you set the algorithm to return local Holder exponents, which provide individual values for each singularity. For signals with numerous Holder exponents that have relatively small variations, you set the algorithm to return a global Holder
exponent. A global Holder exponent applies to the whole signal. For signals with many singularities, you can reduce the number of maxima found by limiting the algorithm to start at or regress to a specific minimum or maximum scale, respectively. For detailed information about the WTMM, see [1] and [3].

\section*{References}
[1] Mallat, S., and W. L. Hwang. "Singularity Detection and Processing with Wavelets." IEEE Transactions on Information Theory. Vol. 38, No. 2, March 1992, pp. 617643.
[2] Wendt, H. and P. Abry. "Multifractality Tests Using Boostrapped Wavelet Leaders." IEEE Transactions on. Signal Processing. Vol. 55, No. 10, 2007, pp. 4811-4820.
[3] Arneodo, A., B. Audit, N. Decoster, J.-F. Muzy, and C. Vaillant. "Wavelet-Based Multifractal Formalism: Application to DNA Sequences, Satellite Images of the Cloud Structure and Stock Market Data." The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes. Bunde, A., J. Kropp, and H. J. Schellnhuber, Eds. 2002, pp. 26-102.

\author{
See Also \\ dwtleader | wfbm
}

Introduced in R2016b

\section*{wtreemgr}

NTREE manager

\section*{Syntax}

\section*{Description}
wtreemgr is a tree management utility.
This function returns information on the tree \(T\) depending on the value of the OPT parameter.

Allowed values for OPT are listed in the table below.
\begin{tabular}{|l|l|}
\hline 'allnodes ' & Tree nodes \\
\hline 'isnode ' & True for existing node \\
\hline 'istnode ' & True for terminal nodes \\
\hline 'nodeasc' & Node ascendants \\
\hline 'nodedesc' & Node descendants \\
\hline 'nodepar' & Node parent \\
\hline 'ntnode ' & Number of terminal nodes \\
\hline 'tnodes ' & Terminal nodes \\
\hline 'leaves ' & Terminal nodes \\
\hline 'noleaves ' & Not terminal nodes \\
\hline 'order' & Tree order \\
\hline 'depth ' & Tree depth \\
\hline
\end{tabular}

\section*{See Also}
allnodes | | istnode | leaves | nodeasc | nodedesc | nodepar | noleaves | ntnode | tnodes | treedpth | treeord

Introduced before R2006a

\section*{wvarchg}

Find variance change points

\section*{Syntax}
[PTS_OPT,KOPT,T_EST] = wvarchg(Y,K,D)

\section*{Description}
[PTS_OPT,KOPT,T_EST] = wvarchg(Y,K,D) computes estimated variance change points for the signal Y for j change points, with \(\mathrm{j}=0,1,2, \ldots, \mathrm{~K}\).

Integer \(D\) is the minimum delay between two change points.
Integer KOPT is the proposed number of change points (\(0 \leq K O P T \leq K\)). The vector PTS_OPT contains the corresponding change points.

For \(1 \leq k \leq K, T _E S T(k+1,1: k)\) contains the \(k\) instants of the variance change points and then, if KOPT > 0, PTS_OPT = T_EST(KOPT+1,1:KOPT) else PTS_OPT = [].

K and D must be integers such that \(1<\mathrm{K} \ll\) length \((\mathrm{Y})\) and \(1 \leq \mathrm{D} \ll\) length \((\mathrm{Y})\).
The signal Y should be zero mean.
wvarchg \((\mathrm{Y}, \mathrm{K})\) is equivalent to wvarchg (\(\mathrm{Y}, \mathrm{K}, 10\)).
wvarchg \((Y)\) is equivalent to wvarchg \((Y, 6,10)\).

\section*{Examples}

\section*{Detect Variance Change Points}

Add two variance change points to the blocks signal. Detect the variance change points using wvarchg.

Load the blocks signal. Add white noise with two variance change points located at index 180 and 600.
```

x = wnoise(1,10);
rng default;
bb = 1.5*randn(1,length(x));
cp1 = 180; cp2 = 600;
x = x + [bb(1:cp1),bb(cp1+1:cp2)/4,bb(cp2+1:end)];

```

Obtain the level-1 wavelet coefficients. Replace the top \(2 \%\) of values with the mean value of the wavelet coefficients to remove all signal.
```

wname = 'db3'; lev = 1;
[c,l] = wavedec(x,lev,wname);
det = wrcoef('d',c,l,wname,1);
y = sort(abs(det));
v2p100 = y(fix(length(y)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

```

Estimate the variance change points using the wavelet coefficients.
```

[pts_Opt,kopt,t_est] = wvarchg(det,5);
sprintf('The estimated change points are %d and %d\n',pts_Opt)

```
ans =
The estimated change points are 181 and 601

\section*{References}

Lavielle, M. (1999), "Detection of multiple changes in a sequence of dependent variables," Stoch. Proc. and their Applications, 83, 2, pp. 79-102.

\section*{Introduced before R2006a}```

[^0]: 'VoicesPerOctave' - Number of voices per octave
 10 (default) | even integer from 4 to 48

[^1]: Data Types: double

[^2]: subplot(2,1,2)
 imagesc(h\{1\})
 title('Horizontal Level 1 Details');

[^3]: \% Tree depth. treedpth(t)

[^4]: \% Tree order. treeord(t)

